
The New C Standard (C90 and C++)

An Economic and Cultural Commentary

Derek M. Jones
derek@knosof.co.uk

Copyright ©2002-2008 Derek M. Jones. All rights reserved.

CHANGES-5

CHANGES

-5Copyright © 2005, 2008 Derek Jones
The material in the C99 subsections is copyright © ISO. The material in the C90 and C++ sections that is
quoted from the respective language standards is copyright © ISO.
Credits and permissions for quoted material is given where that material appears.
THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE PARTICULAR WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN.

Commentary
The phrase at the time of writing is sometimes used. For this version of the material this time should be taken
to mean no later than December 2008.

29 Jan 2008 1.1 Integrated in changes made by TC3, required C sentence renumbering.
60+ recent references added + associated commentary.
A few Usage figures and tables added.
Page layout improvements. Lots of grammar fixes.

5 Aug 2005 1.0b Many hyperlinks added. pdf searching through page 782 speeded up.
Various typos fixed (over 70% reported by Tom Plum).

16 Jun 2005 1.0a Improvements to character set discussion (thanks to Kent Karlsson), margin
references, C99 footnote number typos, and various other typos fixed.

30 May 2005 1.0 Initial release.

v 1.1 January 30, 2008

Introduction 0

Introduction

0 With the introduction of new devices and extended character sets, new features may be added to this
International Standard. Subclauses in the language and library clauses warn implementors and programmers
of usages which, though valid in themselves, may conflict with future additions.
Certain features are obsolescent, which means that they may be considered for withdrawal in future revisions
of this International Standard. They are retained because of their widespread use, but their use in new
implementations (for implementation features) or new programs (for language [6.11] or library features [7.26])
is discouraged.
This International Standard is divided into four major subdivisions:
— preliminary elements (clauses 1–4);
— the characteristics of environments that translate and execute C programs (clause 5);
— the language syntax, constraints, and semantics (clause 6);
— the library facilities (clause 7).
Examples are provided to illustrate possible forms of the constructions described. Footnotes are provided to
emphasize consequences of the rules described in that subclause or elsewhere in this International Standard.
References are used to refer to other related subclauses. Recommendations are provided to give advice or
guidance to implementors. Annexes provide additional information and summarize the information contained
in this International Standard. A bibliography lists documents that were referred to during the preparation of
the standard.
The language clause (clause 6) is derived from “The C Reference Manual”.
The library clause (clause 7) is based on the 1984 /usr/group Standard.
1. Updates to C90 4

C90
C90 was the first version of the C Standard, known as ISO/IEC 9899:1990(E) (Ritchie[3] gives a history of
prestandard development). It has now been officially superseded by C99. The C90 sections ask the question:
What are the differences, if any, between the C90 Standard and the new C99 Standard?
Text such this occurs (with a bar in the margin) when a change of wording can lead to a developer visible
change in behavior of a program.

Possible differences include:

• C90 said X was black, C99 says X is white.

• C99 has relaxed a requirement specified in C90.

• C99 has tightened a requirement specified in C90.

• C99 contains a construct that was not supported in C90.

If a construct is new in C99 this fact is only pointed out in the first sentence of any paragraph discussing
it. This section is omitted if the wording is identical (word for word, or there are minor word changes that
do not change the semantics) to that given in C99. Sometimes sentences have remained the same but have
changed their location in the document. Such changes have not been highlighted.

The first C Standard was created by the US ANSI Committee X3J11 (since renamed as NCITS J11). This X3J11

document is sometimes called C89 after its year of publication as an ANSI standard (The shell and utilities
portion of POSIX[2] specifies a c89 command, even although this standard references the ISO C Standard,
not the ANSI one.). The published document was known as ANSI X3.159–1989.

This ANSI standard document was submitted, in 1990, to ISO for ratification as an International Standard.
Some minor editorial changes needed to be made to the document to accommodate ISO rules (a sed script
was used to make the changes to the troff sources from which the camera-ready copy of the ANSI and ISO
standards was created). For instance, the word Standard was replaced by International Standard and some

January 30, 2008 v 1.1 1

Introduction 1 Updates to C900

major section numbers were changed. More significantly, the Rationale ceased to be included as part of the
document (and the list of names of the committee members was removed). After publication of this ISO
standard in 1990, ANSI went through its procedures for withdrawing their original document and adopting
the ISO Standard. Subsequent purchasers of the ANSI standard see, for instance, the words International
Standard not just Standard.

1 Updates to C90
Part of the responsibility of an ISO Working Group is to provide answers to queries raised against anydefect report

published standard they are responsible for. During the early 1990s, the appropriate ISO procedure seemed
to be the one dealing with defects, and it was decided to create a Defect Report log (entries are commonly
known as DRs). These procedures were subsequently updated and defect reports were renamed interpretation
requests by ISO. The C committee continues to use the term defect and DR, as well as the new term
interpretation request.

Standards Committees try to work toward a publication schedule. As the (self-imposed) deadline for
publication of the C Standard grew nearer, several issues remained outstanding. Rather than delay the
publication date, it was agreed that these issues should be the subject of an Amendment to the Standard.
The purpose of this Amendment was to address issues from Denmark (readable trigraphs), Japan (additional
support for wide character handling), and the UK (tightening up the specification of some constructs whose
wording was considered to be ambiguous). The title of the Amendment was C Integrity.

As work on DRs (this is how they continue to be referenced in the official WG14 log) progressed, it
became apparent that the issues raised by the UK, to be handled by the Amendment, were best dealt with
via these same procedures. It was agreed that the UK work item would be taken out of the Amendment and
converted into a series of DRs. The title of the Amendment remained the same even though the material that
promoted the choice of title was no longer included within it.

To provide visibility for those cases in which a question had uncovered problems with wording in the
published standard the Committee decided to publish collections of DRs. The ISO document containing such
corrections is known as a Technical Corrigendum (TC) and two were published for C90. A TC is normative
and contains edits to the existing standard’s wording only, not the original question or any rationale behind
the decision reached. An alternative to a TC is a Record of Response (RR), a non-normative document.

Wording from the Amendment, the TCs and decisions on defect reports that had not been formally
published were integrated into the body of the C99 document.

A determined group of members of X3J11, the ANSI Committee, felt that C could be made more attractive
to numerical programmers. To this end it was agreed that this Committee should work toward producing a
technical report dealing with numerical issues.

The Numerical C Extensions Group (NCEG) was formed on May 10, 1989; its official designation wasNCEG

X3J11.1. The group was disbanded on January 4, 1994. The group produced a number of internal, committee
reports, but no officially recognized Technical Reports were produced. Topics covered included: compound
literals and designation initializers, extended integers via a header, complex arithmetic, restricted pointers,
variable length arrays, data parallel C extensions (a considerable amount of time was spent on discussing the
merits of different approaches), and floating-point C extensions. Many of these reports were used as the base
documents for constructs introduced into C99.base doc-

ument
Support for parallel threads of execution was not addressed by NCEG because there was already an ANSI

Committee, X3H5, working toward standardizing a parallelism model and Fortran and C language bindings
to it.

C++

Many developers view C++ as a superset of C and expect to be able to migrate C code to C++. While this
book does not get involved in discussing the major redesigns that are likely to be needed to make effective
use of C++, it does do its best to dispel the myth of C being a subset of C++. There may be a language that
is common to both, but these sections tend to concentrate on the issues that need to be considered when

2 v 1.1 January 30, 2008

1 Updates to C90 Introduction 0

translating C source using a C++ translator.
What does the C++ Standard, ISO/IEC 14882:1998(E), have to say about constructs that are in C99?

• Wording is identical. Say no more.
• Wording is similar. Slight English grammar differences, use of terminology differences and other

minor issues. These are sometimes pointed out.
• Wording is different but has the same meaning. The sequence of words is too different to claim they

are the same. But the meaning appears to be the same. These are not pointed out unless they highlight
a C++ view of the world that is different from C.

• Wording is different and has a different meaning. Here the C++ wording is quoted, along with a
discussion of the differences.

• No C++ sentence can be associated with a C99 sentence. This often occurs because of a construct that
does not appear in the C++ Standard and this has been pointed out in a previous sentence occurring
before this derived sentence.

There is a stylized form used to comment source code associated with C— /* behavior */— and C++—
// behavior.

The precursor to C++ was known as C with Classes. While it was being developed C++ existed in an
environment where there was extensive C expertise and C source code. Attempts by Stroustrup to introduce
incompatibilities were met by complaints from his users.[4]

The intertwining of C and C++, in developers mind-sets, in vendors shipping a single translator with a
language selection option, and in the coexistence of translation units written in either language making up
one program means that it is necessary to describe any differences between the two.

The April 1989 meeting of WG14 was asked two questions by ISO: (1) should the C++ language be
standardized, and (2) was WG14 the Committee that should do the work? The decision on (1) was very
close, some arguing that C++ had not yet matured sufficiently to warrant being standardized, others arguing
that working toward a standard would stabilize the language (constant changes to its specification and
implementation were causing headaches for developers using it for mission-critical applications). Having
agreed that there should be a C++ Standard WG14 was almost unanimous in stating that they were not the
Committee that should create the standard. During April 1991 WG21, the ISO C++ Standard’s Committee
was formed; they met for the first time two months later.

In places additional background information on C++ is provided. Particularly where different concepts, or
terminology, are used to describe what is essentially the same behavior.

In a few places constructs available in C++, but not C, are described. The rationale for this is that a C
developer, only having a C++ translator to work with, might accidentally use a C++ construct. Many C++

translators offer a C compatibility mode, which often does little more than switch off support for a few C++

constructs. This description may also provide some background about why things are different in C++.
Everybody has a view point, even the creator of C++, Bjarne Stroustrup. But the final say belongs to the

standards’ body that oversees the development of language standards, SC22. The following was the initial
position.

Resolutions Prepared at the Plenary Meeting of

ISO/IEC JTC 1/SC22

Vienna, Austria

September 23–29, 1991

Resolution AK Differences between C and C++

Notwithstanding that C and C++ are separate languages, ISO/IEC JTC1/SC22 directs WG21 to document
differences in accordance with ISO/IEC TR 10176.

January 30, 2008 v 1.1 3

1. Scope4

Resolution AL WG14 (C) and WG21 (C++) Coordination

While recognizing the need to preserve the respective and different goals of C and C++, ISO/IEC JTC1/SC22
directs WG14 and WG21 to ensure, in current and future development of their respective languages, that
differences between C and C++ are kept to the minimum. The word "differences" is taken to refer to strictly
conforming programs of C which either are invalid programs in C++ or have different semantics in C++.

This position was updated after work on the first C++ Standard had been completed, but too late to have any
major impact on the revision of the C Standard.

Resolutions Prepared at the Eleventh Plenary Meeting of

ISO/IEC JTC 1/SC22

Snekkersten, Denmark

August 24–27, 1998

Resolution 98-6: Relationship Between the Work of WG21 and that of WG14

Recognizing that the user communities of the C and C++ languages are becoming increasingly divergent,
ISO/IEC JTC 1/SC22 authorizes WG21 to carry out future revisions of ISO/IEC 14882:1998 (Programming
Language C++) without necessarily adopting new C language features contained in the current revision to
ISO/IEC 9899:1990 (Programming Language C) or any future revisions thereof.

ISO/IEC JTC 1/SC22 encourages WG14 and WG21 to continue their close cooperation in the future.

1. Scope

1This International Standard specifies the form and establishes the interpretation of programs written in the Cstandard
specifies form
and interpretation programming language.1)

C++

1.1p1 This International Standard specifies requirements for implementations of the C++ programming language.

The C++ Standard does not specify the behavior of programs, but of implementations. For this standard the
behavior of C++ programs has to be deduced from this, implementation-oriented, specification.

In those cases where the same wording is used in both standards, there is the potential for a different
interpretation. In the case of the preprocessor, an entire clause has been copied, almost verbatim, from one
document into the other. Given the problems that implementors are having producing a translator that handles
the complete C++ Standard, and the pressures of market forces, it might be some time before people become
interested in these distinctions.

2It specifies

C++

The C++ Standard does not list the items considered to be within its scope.

4— the syntax and constraints of the C language;

C++

1.1p1

v 1.1 January 30, 2008

2. Normative references 19

The first such requirement is that they implement the language, and so this International Standard also defines
C++.

While the specification of the C++ Standard includes syntax, it does not define and use the term constraints.
What the C++ specification contains are diagnosable rules. A conforming implementation is required to
check and issue a diagnostic if violated.

146 diagnostic
shall produce

5 — the semantic rules for interpreting C programs;

C++

The C++ Standard specifies rules for implementations, not programs.

6 — the representation of input data to be processed by C programs;

C++

The C++ Standard is silent on this issue.

8 — the restrictions and limits imposed by a conforming implementation of C. limits
specify

C90
The model of the minimal host expected to be able to translate a C program was assumed to have 64 K of
free memory.

C++

Annex B contains an informative list of implementation limits. However, the C++ Standard does not specify
any minimum limits that a conforming implementation must meet.

9 This International Standard does not specify

C++

The C++ Standard does not list any issues considered to be outside of its scope.

14 1) This International Standard is designed to promote the portability of C programs among a variety of footnote
1data-processing systems.

C++

No intended purpose is stated by the C++ Standard.

2. Normative references

19 For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. Dated references

C90
This sentence did not appear in the C90 Standard.

C++

1.2p1At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to
agreements based on this International Standard are encouraged to investigate the possibility of applying the
most recent editions of the standards indicated below.

The C++ Standard does not explicitly state whether later versions of standards do or do not apply. In the
case of the C++ library, clause 17.3.1.4 refers to “the ISO C standard,”, which could be read to imply that

January 30, 2008 v 1.1

2. Normative references28

agreements based on the C++ Standard may reference either the C90 library or the C99 library. The C++

ISO Technical Report TR 19768 (C++ Library Extensions) includes support for the wide character library
functionality that is new in C99, but does not include support for some of the type generic maths functions
(some of these are the subject of work on a separate TR) or extended integer types. However, the current C++

Standard document effective references the C90 library.

20However, parties to agreements based on this International Standard are encouraged to investigate the
possibility of applying the most recent editions of the normative documents indicated below.

C90
This sentence did not appear in the C90 Standard.

21For undated references, the latest edition of the normative document referred to applies.

C90
This sentence did not appear in the C90 Standard.

24ISO/IEC 646, Information technology— ISO 7-bit coded character set for information interchange.ISO 646

C++

1.2p1 ISO/IEC 10646–1:1993 Information technology – Universal Multiple-Octet Coded Character Set (UCS) – Part
1: Architecture and Basic Multilingual Plane

25ISO/IEC 2382–1:1993, Information technology— Vocabulary — Part 1: Fundamental terms.ISO 2382

C++

1.2p1 ISO/IEC 2382 (all parts), Information technology — Vocabulary

26ISO 4217, Codes for the representation of currencies and funds.

C++

There is no mention of this document in the C++ Standard.

27ISO 8601, Data elements and interchange formats— Information interchange— Representation of dates andISO 8601

times.

C++

There is no mention of this document in the C++ Standard.

28ISO/IEC 10646 (all parts), Information technology— Universal Multiple-Octet Coded Character Set (UCS).ISO 10646

C++

1.2p1

v 1.1 January 30, 2008

3.1 35

ISO/IEC 10646–1:1993 Information technology – Universal Multiple-Octet Coded Character Set (UCS) – Part
1: Architecture and Basic Multilingual Plane

ISO/IEC 10646:2003 is not divided into parts and the C++ Standard encourages the possibility of applying
the most recent editions of standards. 19 Dated refer-

ences

29 IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously designated IEC 559:1989). IEC 60559

C90
This standard did not specify a particular floating-point format, although the values given as an example for
<float.h> were IEEE-754 specific (which is now an International Standard, IEC 60559).

C++

There is no mention of this document in the C++ Standard.

3. Terms, definitions, and symbols
C90
The title used in the C90 Standard was “Definitions and conventions”.

30 For the purposes of this International Standard, the following definitions apply.

C++

1.3p1For the purposes of this International Standard, the definitions given in ISO/IEC 2382 and the following
definitions apply.

17p9The following subclauses describe the definitions (17.1), and method of description (17.3) for the library. Clause
17.4 and clauses 18 through 27 specify the contents of the library, and library requirements and constraints on
both well-formed C++ programs and conforming implementations.

31 Other terms are defined where they appear in italic type or on the left side of a syntax rule. terms
defined where

C90
The fact that terms are defined when they appear “on the left side of a syntax rule” was not explicitly specified
in the C90 Standard.

33 Terms not defined in this International Standard are to be interpreted according to ISO/IEC 2382–1.

C++

1.3p1For the purposes of this International Standard, the definitions given in ISO/IEC 2382 and the following
definitions apply.

The C++ Standard thus references all parts of the above standard. Not just the first part.

3.1

January 30, 2008 v 1.1

3.4.342

35accessaccess

〈execution-time action〉 to read or modify the value of an object

C++

In C++ the term access is used primarily in the sense of accessibility; that is, the semantic rules dealing with
when identifiers declared in different classes and namespaces can be referred to. The C++ Standard has a
complete clause (Clause 11, Member access control) dealing with this issue. While the C++ Standard also
uses access in the C sense (e.g., in 1.8p1), this is not the primary usage.

3.2

39alignmentalignment

requirement that objects of a particular type be located on storage boundaries with addresses that are
particular multiples of a byte address

C++

3.9p5 Object types have alignment requirements (3.9.1, 3.9.2). The alignment of a complete object type is an
implementation-defined integer value representing a number of bytes; an object is allocated at an address that
meets the alignment requirements of its object type.

There is no requirement on a C implementation to document its alignment requirements.

3.3

40argumentargument

actual argument
actual parameter (deprecated)
expression in the comma-separated list bounded by the parentheses in a function call expression, or a
sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a function-like
macro invocation

C++

The C++ definition, 1.3.1p1, does not include the terms actual argument and actual parameter.

3.4
3.4.1

42implementation-defined behaviorimplementation-
defined behavior unspecified behavior where each implementation documents how the choice is made

C90

Behavior, for a correct program construct and correct data, that depends on the characteristics of the implemen-
tation and that each implementation shall document.

The C99 wording has explicitly made the association between the terms implementation-defined and un-
specified that was only implicit within the wording of the C90 Standard. It is possible to interpret the C90
definition as placing few restrictions on what an implementation-defined behavior might be. For instance,
raising a signal or terminating program execution appear to be permitted. The C99 definition limits the

signed in-
teger con-

version
implementation-

defined

685

possible behaviors to one of the possible behaviors permitted by the standard.

v 1.1 January 30, 2008

3.7 51

C++

The C++ Standard uses the same wording, 1.3.5, as C90.

3.4.2

3.4.3

46 undefined behavior undefined
behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous data, for which this
International Standard imposes no requirements

C90

Behavior, upon use of a nonportable or erroneous program construct or of erroneous data, or of indeterminately
valued objects, for which this International Standard imposes no requirements.

Use of an indeterminate value need not result in undefined behavior. If the value is read from an object that
75 indeterminate

value
579 trap repre-

sentation
reading is unde-
fined behavior

has unsigned char type, the behavior is unspecified. This is because objects of type unsigned char are
required to represent values using a notation that does not support a trap representation.

571 unsigned
char
pure binary3.4.4

49 unspecified behavior unspecified
behavioruse of an unspecified value, or other behavior where this International Standard provides two or more

possibilities and imposes no further requirements on which is chosen in any instance

C90

Behavior, for a correct program construct and correct data, for which this International Standard imposes no
requirements.

The C99 wording more clearly describes the intended meaning of the term unspecified behavior, given the
contexts in which it is used.

C++

1.3.13behavior, for a well-formed program construct and correct data, that depends on the implementation. The
implementation is not required to document which behavior occurs. [Note: usually, the range of possible
behaviors is delineated by this International Standard.]

This specification suggests that there exist possible unspecified behaviors that are not delineated by the
standard, while the wording in the C Standard suggests that all possible unspecified behaviors are mentioned.

3.5

51 bit bit

unit of data storage in the execution environment large enough to hold an object that may have one of two
values

January 30, 2008 v 1.1

3.863

C++

The C++ Standard does not explicitly define this term. The definition given in ISO 2382 is “Either of theISO 2382 25

digits 0 or 1 when used in the binary numeration system.”.

3.6

3.7

58charactercharacter
<abstract> 〈abstract〉 member of a set of elements used for the organization, control, or representation of data

C++

The C++ Standard does not define the term character; however, it does reference ISO/IEC 2382. Part 1,
Clause 01.02.11, defines character using very similar wording to that given in the C Standard. The following
might also be considered applicable.

17.1.2 in clauses 21, 22, and 27, means any object which, when treated sequentially, can represent text. The term does
not only mean char and wchar_t objects, but any value that can be represented by a type that provides the
definitions provided in these clauses.

3.7.1

59charactercharacter
single-byte

single-byte character 〈C〉 bit representation that fits in a byte

C++

The C++ Standard does not define the term character. This term has different meanings in different application
contexts and human cultures. In a language that supports overloading, it makes no sense to restrict the usage
of this term to a particular instance.

3.7.2

3.7.3

62wide characterwide character

bit representation that fits in an object of type wchar_t, capable of representing any character in the current
locale

C++

The C++ Standard uses the term wide-character literal and wide-character sequences, 17.3.2.1.3.3, but does
not define the term wide character.

2.13.2p2 A character literal that begins with the letter L, such as L’x’, is a wide-character literal.

3.8

63constraintconstraint

restriction, either syntactic or semantic, by which the exposition of language elements is to be interpreted

v 1.1 January 30, 2008

3.14 70

C++

The C++ Standard does not contain any constraints; it contains diagnosable rules.

1.3.14 well-formed
programa C++ program constructed according to the syntax rules, diagnosable semantics rules, and the One Definition

Rule (3.2).

However, the library does use the term constraints.

17.4.3 Constraints
on programs

This subclause describes restrictions on C++ programs that use the facilities of the C++ Standard Library.

17.4.4p1This subclause describes the constraints upon, and latitude of, implementations of the C++ Standard library.

But they are not constraints in the C sense of requiring a diagnostic to be issued if they are violated. Like C,
the C++ Standard does not require any diagnostics to be issued during program execution.

3.9

64 correctly rounded result correctly
rounded resultrepresentation in the result format that is nearest in value, subject to the effectivecurrent rounding mode, to

what the result would be given unlimited range and precision

C++

This term is not defined in the C++ Standard (the term rounded only appears once, when discussing rounding
toward zero).

3.10
3.11

66 forward reference forward reference

reference to a later subclause of this International Standard that contains additional information relevant to
this subclause

C++

C++ does not contain any forward reference clauses. However, the other text in the other clauses contain
significantly more references than C99 does.

3.12

67 implementation implementation

particular set of software, running in a particular translation environment under particular control options, that
performs translation of programs for, and supports execution of functions in, a particular execution environment

C++

The C++ Standard does not provide a definition of what an implementation might be.

3.13
3.14

69 object object

region of data storage in the execution environment, the contents of which can represent values

January 30, 2008 v 1.1

3.17.275

C++

While an object is also defined, 1.8p1, to be a region of storage in C++, the term has many other connotations
in an object-oriented language.

70NOTE When referenced, an object may be interpreted as having a particular type; see 6.3.2.1.reference
object

C++

1.8p1 The properties of an object are determined when the object is created.

This referenced/creation difference, compared to C, is possible in C++ because it contains the new and delete
operators (as language keywords) for dynamic-storage allocation. The type of the object being created is
known at the point of creation, which is not the case when the malloc library function is used (one of the
reasons for the introduction of the concept of effective type in C99).effective type 948

3.15
3.16

72recommended practicerecommended
practice

specification that is strongly recommended as being in keeping with the intent of the standard, but that may be
impractical for some implementations

C90
The Recommended practice subsections are new in C99.

C++

C++ gives some recommendations inside “[Note: . . .]”, but does not explicitly define their status (from
reading C++ Committee discussions it would appear to be non-normative).

3.17

73valuevalue

precise meaning of the contents of an object when interpreted as having a specific type

C++

3.9p4 The value representation of an object is the set of bits that hold the value of type T.

3.17.1

74implementation-defined valueimplementation-
defined value unspecified value where each implementation documents how the choice is made

C90
Although C90 specifies that implementation-defined values occur in some situations, it never formally defines
the term.

C++

The C++ Standard follows C90 in not explicitly defining this term.

3.17.2

v 1.1 January 30, 2008

4. Conformance 88

75 indeterminate value indetermi-
nate value

either an unspecified value or a trap representation

C++

Objects may have an indeterminate value. However, the standard does not explicitly say anything about the
properties of this value.

4.1p1. . . , or if the object is uninitialized, a program that necessitates this conversion has undefined behavior.

3.17.3

3.18

3.19

4. Conformance

82 In this International Standard, “shall” is to be interpreted as a requirement on an implementation or on a shall

program;

C++

The C++ Standard does not provide an explicit definition for the term shall. However, since the C++ Standard
was developed under ISO rules from the beginning, the default ISO rules should apply. ISO

shall rules

84 If a “shall” or “shall not” requirement that appears outside of a constraint is violated, the behavior is undefined. shall
outside constraint

C++

This specification for the usage of shall does not appear in the C++ Standard. The ISO rules specify that ISO
shall rules

the meaning of these terms does not depend on the kind of normative context in which they appear. One
implication of this C specification is that the definition of the preprocessor is different in C++. It was
essentially copied verbatim from C90, which operated under different shall rules :-O.

85 Undefined behavior is otherwise indicated in this International Standard by the words “undefined behavior” or undefined
behavior

indicated byby the omission of any explicit definition of behavior.

C++

The C++ Standard does not define the status of any omission of explicit definition of behavior.

88 A program that is correct in all other aspects, operating on correct data, containing unspecified behavior shall correct program

be a correct program and act in accordance with 5.1.2.3.

C90
This statement did not appear in the C90 Standard. It was added in C99 to make it clear that a strictly
conforming program can contain constructs whose behavior is unspecified, provided the output is not affected
by the behavior chosen by an implementation.

C++

1.4p2

January 30, 2008 v 1.1

4. Conformance93

Although this International Standard states only requirements on C++ implementations, those requirements are
often easier to understand if they are phrased as requirements on programs, parts of programs, or execution of
programs. Such requirements have the following meaning:

— If a program contains no violations of the rules of this International Standard, a conforming implementation
shall, within its resource limits, accept and correctly execute that program.

footnote 3 “Correct execution” can include undefined behavior, depending on the data being processed; see 1.3 and 1.9.

Programs which have the status, according to the C Standard, of being strictly conforming or conforming
have no equivalent status in C++.

89The implementation shall not successfully translate a preprocessing translation unit containing a #error#error
terminate transla-
tion preprocessing directive unless it is part of a group skipped by conditional inclusion.

C90
C90 required that a diagnostic be issued when a #error preprocessing directive was encountered, but the
translator was allowed to continue (in the sense that there was no explicit specification saying otherwise)
translation of the rest of the source code and signal successful translation on completion.

C++

16.5 . . . , and renders the program ill-formed.

It is possible that a C++ translator will continue to translate a program after it has encountered a #error
directive (the situation is as ambiguous as it was in C90).

90A strictly conforming program shall use only those features of the language and library specified in thisstrictly conform-
ing program
use features of
language/library

International Standard.2)

C++

1.3.14 well-
formed program

a C++ program constructed according to the syntax rules, diagnosable semantic rules, and the One Definition
Rule (3.2).

The C++ term well-formed is not as strong as the C term strictly conforming. This is partly as a result of the
former language being defined in terms of requirements on an implementation, not in terms of requirements
on a program, as in C’s case. There is also, perhaps, the thinking behind the C++ term of being able to checkstandard

specifies form
and interpretation

1

statically for a program being well-formed. The concept does not include any execution-time behavior (which
strictly conforming does include). The C++ Standard does not define a term stronger than well-formed.

The C requirement to use only those library functions specified in the standard is not so clear-cut for
freestanding C++ implementations.

1.4p7 For a hosted implementation, this International Standard defines the set of available libraries. A freestanding
implementation is one in which execution may take place without the benefit of an operating system, and has an
implementation-defined set of libraries that includes certain language-support libraries (17.4.1.3).

v 1.1 January 30, 2008

4. Conformance 98

93 A conforming hosted implementation shall accept any strictly conforming program. conforming
hosted im-

plementationC++

No such requirement is explicitly specified in the C++ Standard.

94 A conforming freestanding implementation shall accept any strictly conforming program that does not use conforming
freestanding

implementationcomplex types and in which the use of the features specified in the library clause (clause 7) is confined
to the contents of the standard headers <float.h>, <iso646.h>, <limits.h>, <stdarg.h>, <stdbool.h>,
<stddef.h>, and <stdint.h>.

C90
The header <iso646.h> was added in Amendment 1 to C90. Support for the complex types, the headers
<stdbool.h> and <stdint.h>, are new in C99.

C++

1.4p7A freestanding implementation is one in which execution may take place without the benefit of an operating
system, and has an implementation-defined set of libraries that include certain language-support libraries
(17.4.1.3).

17.4.1.3p2A freestanding implementation has an implementation-defined set of headers. This set shall include at least the
following headers, as shown in Table 13:

. . .

Table 13 C++ Headers for Freestanding Implementations
Subclause Header(s)

18.1 Types <cstddef>
18.2 Implementation properties <limits>
18.3 Start and termination <cstdlib>
18.4 Dynamic memory management <new>
18.5 Type identification <typeinfo>
18.6 Exception handling <exception>
18.7 Other runtime support <cstdarg>

The supplied version of the header <cstdlib> shall declare at least the functions abort(), atexit(), and
exit() (18.3).

The C++ Standard does not include support for the headers <stdbool.h> or <stdint.h>, which are new in
C99.

96 2) A strictly conforming program can use conditional features (such as those in annex F) provided the use is footnote
2guarded by a #ifdef directive with the appropriate macro.

C90
The C90 Standard did not contain any conditional constructs.

C++

The C++ Standard also contains optional constructs. However, testing for the availability of any optional
constructs involves checking the values of certain class members. For instance, an implementation’s support
for the IEC 60559 Standard is indicated by the value of the member is_iec559 (18.2.1.2). 29 IEC 60559

January 30, 2008 v 1.1

5.1.1.1 Program structure105

983) This implies that a conforming implementation reserves no identifiers other than those explicitly reserved infootnote
3 this International Standard.

C++

The clauses 17.4.3.1, 17.4.4, and their associated subclauses list identifier spellings that are reserved, but do
not specify that a conforming C++ implementation must not reserve identifiers having other spellings.

99A conforming program is one that is acceptable to a conforming implementation.4)conforming pro-
gram

C++

The C++ conformance model is based on the conformance of the implementation, not a program (1.4p2).
However, it does define the term well-formed program:

1.3.14 well-
formed program

a C++ program constructed according to the syntax rules, diagnosable semantic rules, and the One Definition
Rule (3.2).

100An implementation shall be accompanied by a document that defines all implementation-defined and locale-implementation
document specific characteristics and all extensions.

C90
Support for locale-specific characteristics is new in C99. The equivalent C90 constructs were defined to be

locale-
specific

behavior implementation-defined, and hence were also required to be documented.

1024) Strictly conforming programs are intended to be maximally portable among conforming implementations.footnote
4

C++

The word portable does not occur in the C++ Standard. This may be a consequence of the conformance
model which is based on implementations, not programs.

103Conforming programs may depend upon nonportable features of a conforming implementation.conforming
programs
may depend
on C++

While a conforming implementation of C++ may have extensions, 1.4p8, the C++ conformance model does
not deal with programs.

5. Environment

104An implementation translates C source files and executes C programs in two data-processing-system environ-environment
execution ments, which will be called the translation environment and the execution environment in this International

Standard.

C++

The C++ Standard says nothing about the environment in which C++ programs are translated.

105Their characteristics define and constrain the results of executing conforming C programs constructed
according to the syntactic and semantic rules for conforming implementations.

C++

The C++ Standard makes no such observation.

5.1 Conceptual models

v 1.1 January 30, 2008

5.1.1.2 Translation phases 116

5.1.1 Translation environment

5.1.1.1 Program structure

108 The text of the program is kept in units called source files, (or preprocessing files) in this International Standard. source filespreprocess-
ing filesC90

The term preprocessing files is new in C99.

C++

The C++ Standard follows the wording in C90 and does not define the term preprocessing files.

109 A source file together with all the headers and source files included via the preprocessing directive #include preprocessing
translation unit

known asis known as a preprocessing translation unit.

C90
The term preprocessing translation unit is new in C99.

C++

Like C90, the C++ Standard does not define the term preprocessing translation unit.

110 After preprocessing, a preprocessing translation unit is called a translation unit. translation unit
known as

C90

A source file together with all the headers and source files included via the preprocessing directive #include,
less any source lines skipped by any of the conditional inclusion preprocessing directives, is called a translation
unit.

This definition differs from C99 in that it does not specify whether macro definitions are part of a translation
unit.

C++

The C++ Standard, 2p1, contains the same wording as C90.

5.1.1.2 Translation phases

115 The precedence among the syntax rules of translation is specified by the following phases.5) translation
phases of

C++

C++ has nine translation phases. An extra phase has been inserted between what are called phases 7 and 8 in
C. This additional phase is needed to handle templates, which are not supported in C. The C++ Standard
specifies what the C Rationale calls model A. 116 C++

model A

116 1. Physical source file multibyte characters are mapped, in an implementation-defined manner, to the source translation phase
1character set (introducing new-line characters for end-of-line indicators) if necessary.

C90
In C90 the source file contains characters (the 8-bit kind), not multibyte characters.

C++

2.1p1

January 30, 2008 v 1.1

5.1.1.2 Translation phases118

1. Physical source file characters are mapped, in an implementation-defined manner, to the basic source
character set (introducing new-line characters for end-of-line indicators) if necessary. . . . Any source file
character not in the basic source character set (2.2) is replaced by the universal-character-name that designates
that character.

1 #define mkstr(s) #s
2

3 char *dollar = mkstr($); // The string "\u0024" is assigned
4 /* The string "$", if that character is supported */

C++
model A

Rationale The C++ Committee defined its Standard in terms of model A, just because that was the clearest to specify
(used the fewest hypothetical constructs) because the basic source character set is a well-defined finite set.

The situation is not the same for C given the already existing text for the standard, which allows multibyte
characters to appear almost anywhere (the most notable exception being in identifiers), and given the more
low-level (or close to the metal) nature of some uses of the language.

Therefore, the C committee agreed in general that model B, keeping UCNs and native characters until as late
as possible, is more in the “spirit of C” and, while probably more difficult to specify, is more able to encompass
the existing diversity. The advantage of model B is also that it might encompass more programs and users’
intents than the two others, particularly if shift states are significant in the source text as is often the case in
East Asia.

In any case, translation phase 1 begins with an implementation-defined mapping; and such mapping can
choose to implement model A or C (but the implementation must document it). As a by-product, a strictly
conforming program cannot rely on the specifics handled differently by the three models: examples of non-strict
conformance include handling of shift states inside strings and calls like fopen("\\ubeda\\file.txt","r")
and #include "sys\udefault.h". Shift states are guaranteed to be handled correctly, however, as long as
the implementation performs no mapping at the beginning of phase 1; and the two specific examples given
above can be made much more portable by rewriting these as fopen("\\" "ubeda\\file.txt", "r") and
#include "sys/udefault.h".

1182. Each instance of a backslash character (\) immediately followed by a new-line character is deleted, splicingtranslation phase
2
physical source
line
logical source line

physical source lines to form logical source lines.

C++

The first sentence of 2.1p2 is the same as C90.
The following sentence is not in the C Standard:

2.1p2 If, as a result, a character sequence that matches the syntax of a universal-character-name is produced, the
behavior is undefined.

1 #include <stdio.h>
2

3 int \u1F\
4 5F; // undefined behavior
5 /* defined behavior */
6 void f(void)

v 1.1 January 30, 2008

5.1.1.2 Translation phases 130

7 {
8 printf("\\u0123"); /* No UCNs. */
9 printf("\\u\

10 0123"); /* same as above, no UCNs */
11 // undefined, character sequence that matches a UCN created
12 }

119 Only the last backslash on any physical source line shall be eligible for being part of such a splice.

C90
This fact was not explicitly specified in the C90 Standard.

C++

The C++ Standard uses the wording from C90.

122 The description is conceptual only, and does not specify any particular implementation.

C++

1.9p1In particular, they need not copy or emulate the structure of the abstract machine. Rather, conforming
implementations are required to emulate (only) the observable behavior of the abstract machine as explained
below.5)

Footnote 5This provision is sometimes called the “as-if” rule, because an implementation is free to disregard any
requirement of this International Standard as long as the result is as if the requirement had been obeyed, as far
as can be determined from the observable behavior of the program. For instance, an actual implementation need
not evaluate part of an expression if it can deduce that its value is not used and that no side effects affecting the
observable behavior of the program are produced.

123 A source file that is not empty shall end in a new-line character, which shall not be immediately preceded by a source file
end in new-linebackslash character before any such splicing takes place.

C90
The wording, “ . . . before any such splicing takes place.”, is new in C99.

129 4. Preprocessing directives are executed, macro invocations are expanded, and _Pragma unary operator translation phase
4expressions are executed.

C90
Support for the _Pragma unary operator is new in C99.

C++

Support for the _Pragma unary operator is new in C99 and is not available in C++.

130 If a character sequence that matches the syntax of a universal character name is produced by token
concatenation (6.10.3.3), the behavior is undefined.

C90
Support for universal character names is new in C99.

January 30, 2008 v 1.1

5.1.1.3 Diagnostics146

C++

In C++ universal character names are only processed during translation phase 1. Character sequences created
transla-

tion phase
1

116

during subsequent phases of translation, which might be interpreted as a universal character name, are not
interpreted as such by a translator.

132All preprocessing directives are then deleted.preprocess-
ing directives
deleted C++

This explicit requirement was added in C99 and is not stated in the C++ Standard.

134if there is no corresponding member, it is converted to an implementation-defined member other than the nullcorrespond-
ing member
if no (wide) character.7)

C90
The C90 Standard did not contain this statement. It was added in C99 to handle the fact that the UCN notation
supports the specification of numeric values that may not represent any specified (by ISO 10646) character.ISO 10646 28

C++

2.2p3 The values of the members of the execution character sets are implementation-defined, and any additional
members are locale-specific.

C++ handles implementation-defined character members during translation phase 1.
transla-

tion phase
1

116

1356. Adjacent string literal tokens are concatenated.translation phase
6

C90

6. Adjacent character string literal tokens are concatenated and adjacent wide string literal tokens are
concatenated.

It was a constraint violation to concatenate the two types of string literals together in C90. Character and
wide string literals are treated on the same footing in C99.

The introduction of the macros for I/O format specifiers in C99 created the potential need to support the
concatenation of character string literals with wide string literals. These macros are required to expand to
character string literals. A program that wanted to use them in a format specifier, containing wide character
string literals, would be unable to do so without this change of specification.

1398. All external object and function references are resolved.translation phase
8

C++

The C translation phase 8 is numbered as translation phase 9 in C++ (in C++, translation phase 8 specifies the
instantiation of templates).

1457) An implementation need not convert all non-corresponding source characters to the same executionfootnote
7 character.

C++

The C++ Standard specifies that the conversion is implementation-defined (2.1p1, 2.13.2p5) and does not
explicitly specify this special case.

5.1.1.3 Diagnostics

v 1.1 January 30, 2008

5.1.2.2 Hosted environment 158

146 A conforming implementation shall produce at least one diagnostic message (identified in an implementation- diagnostic
shall producedefined manner) if a preprocessing translation unit or translation unit contains a violation of any syntax rule or

constraint, even if the behavior is also explicitly specified as undefined or implementation-defined.

C++

1.4p2— If a program contains a violation of any diagnosable rule, a conforming implementation shall issue at least
one diagnostic message, except that

— If a program contains a violation of a rule for which no diagnostic is required, this International Standard
places no requirement on implementations with respect to that program.

A program that contains “a violation of a rule for which no diagnostic is required”, for instance on line 1,
followed by “a violation of any diagnosable rule”, for instance on line 2; a C++ translator is not required to
issue a diagnostic message.

5.1.2 Execution environments

151 All objects with static storage duration shall be initialized (set to their initial values) before program startup. static stor-
age duration
initialized be-

fore startupC++

In C++ the storage occupied by any object of static storage duration is first zero-initialized at program startup
(3.6.2p1, 8.5), before any other initialization takes place. The storage is then initialized by any nonzero values.
C++ permits static storage duration objects to be initialized using nonconstant values (not supported in C).
The order of initialization is the textual order of the definitions in the source code, within a single translation
unit. However, there is no defined order across translation units. Because C requires the values used to
initialize objects of static storage duration to be constant, there are no initializer ordering dependencies.

153 Program termination returns control to the execution environment.

C++

3.6.1p1[Note: in a freestanding environment, start-up and termination is implementation defined;

3.6.1p5A return statement in main has the effect of leaving the main function (destroying . . . duration) and calling
exit with the return value as the argument.

18.3p8The function exit() has additional behavior in this International Standard:

. . . Finally, control is returned to the host environment.

5.1.2.1 Freestanding environment
5.1.2.2 Hosted environment

158 A hosted environment need not be provided, but shall conform to the following specifications if present. hosted en-
vironment

January 30, 2008 v 1.1

5.1.2.2.2 Program execution177

C++

1.4p7 For a hosted implementation, this International Standard defines the set of available libraries.

17.4.1.3p1 For a hosted implementation, this International Standard describes the set of available headers.

160Of course, an implementation is free to produce any number of diagnostics as long as a valid program is still
correctly translated.

C++

The C++ Standard does not explicitly give this permission. However, producing diagnostic messages that the
C++ Standard does not require to be generated might be regarded as an extension, and these are explicitly
permitted (1.4p8).

5.1.2.2.1 Program startup

166or equivalent;9)

C++

The C++ Standard gives no such explicit permission.

167or in some other implementation-defined manner.

C90
Support for this latitude is new in C99.

C++

The C++ Standard explicitly gives permission for an implementation to define this function using different
parameter types, but it specifies that the return type is int.

3.6.1p2 It shall have a return type of int, but otherwise its type is implementation-defined.

. . .

[Note: it is recommended that any further (optional) parameters be added after argv.]

172The intent is to supply to the program information determined prior to program startup from elsewhere in themain parameters
intent hosted environment.

C++

The C++ Standard does not specify any intent behind its support for this functionality.

173If the host environment is not capable of supplying strings with letters in both uppercase and lowercase, theargv
lowercase implementation shall ensure that the strings are received in lowercase.

C++

The C++ Standard is silent on this issue.

v 1.1 January 30, 2008

5.1.2.3 Program execution 191

177— The parameters argc and argv and the strings pointed to by the argv array shall be modifiable by the
program, and retain their last-stored values between program startup and program termination.

C++

The C++ Standard is silent on this issue.

5.1.2.2.2 Program execution

179 9) Thus, int can be replaced by a typedef name defined as int, or the type of argv can be written as char ** footnote
9

argv, and so on.

C++

The C++ Standard does not make this observation.

5.1.2.2.3 Program termination

180 If the return type of the main function is a type compatible with int, a return from the initial call to the main main
return equiv-

alent tofunction is equivalent to calling the exit function with the value returned by the main function as its argument;10)

C90
Support for a return type of main other than int is new in C99.

C++

The C++ wording is essentially the same as C90.

181 reaching the } that terminates the main function returns a value of 0.

C90
This requirement is new in C99.

If the main function executes a return that specifies no value, the termination status returned to the host
environment is undefined.

182 If the return type is not compatible with int, the termination status returned to the host environment is main
termination sta-
tus unspecifiedunspecified.

C90
Support main returning a type that is not compatible with int is new in C99.

C++

3.6.1p2It shall have a return type of int, . . .

Like C90, C++ does not support main having any return type other than int.

5.1.2.3 Program execution

189 In the abstract machine, all expressions are evaluated as specified by the semantics. expression
evaluation

abstract machineC++

The C++ Standard specifies no such requirement.

January 30, 2008 v 1.1

5.1.2.3 Program execution200

191When the processing of the abstract machine is interrupted by receipt of a signal, only the values of objects assignal interrupt
abstract machine
processing of the previous sequence point may be relied on.

C++

1.9p9 When the processing of the abstract machine is interrupted by receipt of a signal, the value of any objects
with type other than volatile sig_atomic_t are unspecified, and the value of any object not of volatile
sig_atomic_t that is modified by the handler becomes undefined.

This additional wording closely follows that given in the description of the signal function in the library
clause of the C Standard.

192Objects that may be modified between the previous sequence point and the next sequence point need notmodified objects
received correct
value have received their correct values yet.

C++

The C++ Standard does not make this observation.

19510) In accordance with 6.2.4, the lifetimes of objects with automatic storage duration declared in main willfootnote
10 have ended in the former case, even where they would not have in the latter.

C90
This footnote did not appear in the C90 Standard and was added by the response to DR #085.

19611) The IEC 60559 standard for binary floating-point arithmetic requires certain user-accessible status flagsfootnote
11 and control modes.

C90
The dependence on this floating-point format is new in C99. But, it is still not required.

C++

The C++ Standard does not make these observations about IEC 60559.

197Floating-point operations implicitly set the status flags;

C++

The C++ Standard does not say anything about status flags in the context of side effects. However, if a C++

implementation supports IEC 60559 (i.e., is_iec559 is true, 18.2.1.2p52) then floating-point operations
will implicitly set the status flags (as required by that standard).

198modes affect result values of floating-point operations.

C++

The C++ Standard does not say anything about floating-point modes in the context of side effects.

199Implementations that support such floating-point state are required to regard changes to it as side effects—side effect
floating-point
state see annex F for details.

C++

The C++ Standard does not specify any such requirement.

200The floating-point environment library <fenv.h> provides a programming facility for indicating when these side
effects matter, freeing the implementations in other cases.

v 1.1 January 30, 2008

5.1.2.3 Program execution 211

C90
Support for the header <fenv.h> is new in C99.

C++

Support for the header <fenv.h> is new in C99, and there is no equivalent library header specified in the C++

Standard.

201— At program termination, all data written into files shall be identical to the result that execution of the program
according to the abstract semantics would have produced.

C++

1.9p11— At program termination, all data written into files shall be identical to one of the possible results that
execution of the program according to the abstract semantics would have produced.

The C++ Standard is technically more accurate in recognizing that the output of a conforming program may
vary, if it contains unspecified behavior.

209 EXAMPLE 4 Implementations employing wide registers have to take care to honor appropriate semantics.
Values are independent of whether they are represented in a register or in memory. For example, an implicit
spilling of a register is not permitted to alter the value. Also, an explicit store and load is required to round to
the precision of the storage type. In particular, casts and assignments are required to perform their specified
conversion. For the fragment

double d1, d2;
float f;
d1 = f = expression;
d2 = (float) expression;

the values assigned to d1 and d2 are required to have been converted to float.

C90
This example is new in C99.

210 EXAMPLE 5 Rearrangement for floating-point expressions is often restricted because of limitations in precision
as well as range. The implementation cannot generally apply the mathematical associative rules for addition
or multiplication, nor the distributive rule, because of roundoff error, even in the absence of overflow and
underflow. Likewise, implementations cannot generally replace decimal constants in order to rearrange
expressions. In the following fragment, rearrangements suggested by mathematical rules for real numbers are
often not valid (see F.8).

double x, y, z;
/* ... */
x = (x * y) * z; // not equivalent to x *= y * z;
z = (x - y) + y ; // not equivalent to z = x;
z = x + x * y; // not equivalent to z = x * (1.0 + y);
y = x / 5.0; // not equivalent to y = x * 0.2;

C90
This example is new in C99.

211 EXAMPLE 6 To illustrate the grouping behavior of expressions, in the following fragment EXAMPLE
expression

groupingint a, b;
/* ... */
a = a + 32760 + b + 5;

January 30, 2008 v 1.1

5.2.1 Character sets215

the expression statement behaves exactly the same as

a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is next
added to b, and that result is then added to 5 which results in the value assigned to a. On a machine in
which overflows produce an explicit trap and in which the range of values representable by an int is [-32768,
+32767], the implementation cannot rewrite this expression as

a = ((a + b) + 32765);

since if the values for a and b were, respectively, -32754 and -15, the sum a + b would produce a trap while
the original expression would not; nor can the expression be rewritten either as

a = ((a + 32765) + b);

or

a = (a + (b + 32765));

since the values for a and b might have been, respectively, 4 and -8 or -17 and 12. However, on a machine in
which overflow silently generates some value and where positive and negative overflows cancel, the above
expression statement can be rewritten by the implementation in any of the above ways because the same
result will occur.

C90
The C90 Standard used the term exception rather than trap.

5.2 Environmental considerations
5.2.1 Character sets

214Two sets of characters and their associated collating sequences shall be defined: the set in which source filessource character
set
execution charac-
ter set

are written (the source character set), and the set interpreted in the execution environment (the execution
character set).

C90
The C90 Standard did not explicitly define the terms source character set and execution character set.

C++

The C++ Standard does not contain a requirement to define a collating sequence on the character sets it
specifies.

215Each set is further divided into a basic character set, whose contents are given by this subclause, and a set ofbasic character
set
extended charac-
ters

zero or more locale-specific members (which are not members of the basic character set) called extended
characters.

C90
This explicit subdivision of characters into sets is new in C99. The wording in the C90 Standard specifiedsource char-

acter set
214

the minimum contents of the basic source and basic execution character sets. These terms are now defined
exactly, with all other characters being called extended characters.

. . . ; any additional members beyond those required by this subclause are locale-specific.

C++

2.2p3

v 1.1 January 30, 2008

5.2.1 Character sets 222

The values of the members of the execution character sets are implementation-defined, and any additional
members are locale-specific.

The C++ Standard more closely follows the C90 wording.

220 it is used to terminate a character string. character string
terminate

C++

2.13.4p4After any necessary concatenation, in translation phase 7 (2.1), ’\0’ is appended to every string literal so that
programs that scan a string can find its end.

In practice the C usage is the same as that specified by C++.

221 Both the basic source and basic execution character sets shall have the following members: the 26 uppercase basic source
character set

basic execution
character set

letters of the Latin alphabet

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

the 26 lowercase letters of the Latin alphabet

a b c d e f g h i j k l m
n o p q r s t u v w x y z

the 10 decimal digits

0 1 2 3 4 5 6 7 8 9

the following 29 graphic characters

! " # % & ’ () * + , - . / :
; < = > ? [\] ^ _ { | } ~

the space character, and control characters representing horizontal tab, vertical tab, and form feed.

C90
The C90 Standard referred to these characters as the English alphabet.

C++

2.2p1The basic source character set consists of 96 characters: the space character, the control characters representing
horizontal tab, vertical tab, form feed, and new-line, plus the following 91 graphics characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9
_ { } [] # () < > % : ; . ? * + - / ^ & | ~ ! = , \ " ’

The C++ Standard includes new-line in the basic source character set (C only includes it in the basic execution
character set).

basic exe-
cution char-
acter set
control characters

The C++ Standard does not separate out the uppercase, lowercase, and decimal digits from the graphical
characters, so technically they are not defined for the basic source character set (the library functions such as
toupper effectively define these terms for the execution character set).

January 30, 2008 v 1.1

5.2.1 Character sets230

222The representation of each member of the source and execution basic character sets shall fit in a byte.basic char-
acter set
fit in a byte C++

1.7p1 A byte is at least large enough to contain any member of the basic execution character set and . . .

This requirement reverses the dependency given in the C Standard, but the effect is the same.

223In both the source and execution basic character sets, the value of each character after 0 in the above list ofdigit characters
contiguous decimal digits shall be one greater than the value of the previous.

C++

The above wording has been proposed as the response to C++ DR #173.

224In source files, there shall be some way of indicating the end of each line of text;end-of-line
representation

C++

The C++ Standard does not specify this level of detail (although it does refer to end-of-line indicators,
2.1p1n1).

225this International Standard treats such an end-of-line indicator as if it were a single new-line character.

C++

2.1p1n1 . . . (introducing new-line characters for end-of-line indicators) . . .

227If any other characters are encountered in a source file (except in an identifier, a character constant, a string
literal, a header name, a comment, or a preprocessing token that is never converted to a token), the behavior
is undefined.

C90
Support for additional characters in identifiers is new in C99.

C++

2.1p1 Any source file character not in the basic source character set (2.2) is replaced by the universal-character-name
that designates that character.

The C++ Standard specifies the behavior and a translator is required to handle source code containing such a
character. A C translator is permitted to issue a diagnostic and fail to translate the source code.

228A letter is an uppercase letter or a lowercase letter as defined above;letter

C90
This definition is new in C99.

229in this International Standard the term does not include other characters that are letters in other alphabets.

v 1.1 January 30, 2008

5.2.1.2 Multibyte characters 245

C++

The definition used in the C++ Standard, 17.3.2.1.3 (the footnote applies to C90 only), implies this is also
true in C++.

230 The universal character name construct provides a way to name other characters.

C90
Support for universal character names is new in C99.

5.2.1.1 Trigraph sequences
5.2.1.2 Multibyte characters

238 The source character set may contain multibyte characters, used to represent members of the extended multibyte
character

source containcharacter set.

C++

The representations used for multibyte characters, in source code, invariably involve at least one character
that is not in the basic source character set:

2.1p1Any source file character not in the basic source character set (2.2) is replaced by the universal-character-name
that designates that character.

The C++ Standard does not discuss the issue of a translator having to process multibyte characters during
translation. However, implementations may choose to replace such characters with a corresponding universal-
character-name.

239 The execution character set may also contain multibyte characters, which need not have the same encoding
as for the source character set.

C++

There is no explicit statement about such behavior being permitted in the C++ Standard. The C header
<wchar.h> (specified in Amendment 1 to C90) is included by reference and so the support it defines for
multibyte characters needs to be provided by C++ implementations.

243 — A multibyte character set may have a state-dependent encoding, wherein each sequence of multibyte multibyte
character

state-dependent
encoding
shift state

characters begins in an initial shift state and enters other locale-specific shift states when specific multibyte
characters are encountered in the sequence.

C90
The C90 Standard specified implementation-defined shift states rather than locale-specific shift states.

C++

The definition of multibyte character, 1.3.8, says nothing about encoding issues (other than that more than
one byte may be used). The definition of multibyte strings, 17.3.2.1.3.2, requires the multibyte characters to
begin and end in the initial shift state.

244 While in the initial shift state, all single-byte characters retain their usual interpretation and do not alter the
shift state.

C++

The C++ Standard does not explicitly specify this requirement.

245 12) The trigraph sequences enable the input of characters that are not defined in the Invariant Code Set as footnote
12described in ISO/IEC 646, which is a subset of the seven-bit US ASCII code set.

January 30, 2008 v 1.1

5.2.2 Character display semantics252

C90
The C90 Standard explicitly referred to the 1983 version of ISO/IEC 646 standard.

246The interpretation for subsequent bytes in the sequence is a function of the current shift state.

C++

A set of virtual functions for handling state-dependent encodings, during program execution, is discussed in
Clause 22, Localization library. But, this requirement is not specified.

247— A byte with all bits zero shall be interpreted as a null character independent of shift state.byte
all bits zero

C++

2.2p3 . . . , plus a null character (respectively, null wide character), whose representation has all zero bits.

While the C++ Standard does not rule out the possibility of all bits zero having another interpretation in other
contexts, other requirements (17.3.2.1.3.1p1 and 17.3.2.1.3.2p1) restrict these other contexts, as do existing
character set encodings.

248— A byte with all bits zero shall not occur in the second or subsequent bytes of a Such a byte shall not occurmultibyte
character
end in initial shift
state

as part of any other multibyte character.

C++

This requirement can be deduced from the definition of null terminated byte strings, 17.3.2.1.3.1p1, and null
terminated multibyte strings, 17.3.2.1.3.2p1.

250— An identifier, comment, string literal, character constant, or header name shall begin and end in the initialtoken
shift state shift state.

C90
Support for multibyte characters in identifiers is new in C99.

C++

In C++ all characters are mapped to the source character set in translation phase 1. Any shift state encoding
transla-

tion phase
1

116

will not exist after translation phase 1, so the C requirement is not applicable to C++ source files.

251— An identifier, comment, string literal, character constant, or header name shall consist of a sequence of
valid multibyte characters.

C90
Support for multibyte characters in identifiers is new in C99.

C++

In C++ all characters are mapped to the source character set in translation phase 1. Any shift state encoding
transla-

tion phase
1

116

will not exist after translation phase 1, so the C requirement is not applicable to C++ source files.

5.2.2 Character display semantics
C++

Clause 18 mentions “display as a wstring” in Notes:. But, there is no other mention of display semantics
anywhere in the standard.

252The active position is that location on a display device where the next character output by the fputc function
would appear.

v 1.1 January 30, 2008

5.2.2 Character display semantics 259

C++

C++ has no concept of active position. The fputc function appears in "Table 94" as one of the functions
supported by C++.

253 The intent of writing a printing character (as defined by the isprint function) to a display device is to display a
graphic representation of that character at the active position and then advance the active position to the next
position on the current line.

C++

The C++ Standard does not discuss character display semantics.

254 The direction of writing is locale-specific. writing direction
locale-specific

C++

The C++ Standard does not discuss character display semantics.

255 If the active position is at the final position of a line (if there is one), the behavior of the display device is
unspecified.

C++

The C++ Standard does not discuss character display semantics.

256 Alphabetic escape sequences representing nongraphic characters in the execution character set are intended
to produce actions on display devices as follows:

C++

The C++ Standard does not discuss character display semantics.

257 \a (alert) Produces an audible or visible alert without changing the active position.

C++

Alert appears in Table 5, 2.13.2p3. There is no other description of this escape sequence, although the C
behavior might be implied from the following wording:

17.4.1.2p3The facilities of the Standard C Library are provided in 18 additional headers, as shown in Table 12:

258 \b (backspace) Moves the active position to the previous position on the current line. backspace
escape sequence

C++

Backspace appears in Table 5, 2.13.2p3. There is no other description of this escape sequence, although the
C behavior might be implied from the following wording:

17.4.1.2p3The facilities of the Standard C Library are provided in 18 additional headers, as shown in Table 12:

259 If the active position is at the initial position of a line, the behavior of the display device is unspecified.

C90

January 30, 2008 v 1.1

5.2.2 Character display semantics264

If the active position is at the initial position of a line, the behavior is unspecified.

This wording differs from C99 in that it renders the behavior of the program as unspecified. The program
simply writes the character; how the device handles the character is beyond its control.

C++

The C++ Standard does not discuss character display semantics.

260\f (form feed) Moves the active position to the initial position at the start of the next logical page.

C++

Form feed appears in Table 5, 2.13.2p3. There is no other description of this escape sequence, although the C
behavior might be implied from the following wording:

17.4.1.2p3 The facilities of the Standard C Library are provided in 18 additional headers, as shown in Table 12:

261\n (new line) Moves the active position to the initial position of the next line.new-line
escape sequence

C++

New line appears in Table 5, 2.13.2p3. There is no other description of this escape sequence, although the C
behavior might be implied from the following wording:

17.4.1.2p3 The facilities of the Standard C Library are provided in 18 additional headers, as shown in Table 12:

262\r (carriage return) Moves the active position to the initial position of the current line.carriage return
escape sequence

C++

Carriage return appears in Table 5, 2.13.2p3. There is no other description of this escape sequence, although
the C behavior might be implied from the following wording:

17.4.1.2p3 The facilities of the Standard C Library are provided in 18 additional headers, as shown in Table 12:

263\t (horizontal tab) Moves the active position to the next horizontal tabulation position on the current line.horizontal tab
escape sequence

C++

Horizontal tab appears in Table 5, 2.13.2p3. There is no other description of this escape sequence, although
the C behavior might be implied from the following wording:

17.4.1.2p3 The facilities of the Standard C Library are provided in 18 additional headers, as shown in Table 12:

264If the active position is at or past the last defined horizontal tabulation position, the behavior of the display
device is unspecified.

C90

v 1.1 January 30, 2008

5.2.4 Environmental limits 272

If the active position is at or past the last defined horizontal tabulation position, the behavior is unspecified.

265 \v (vertical tab) Moves the active position to the initial position of the next vertical tabulation position. vertical tab
escape sequence

C++

Vertical tab appears in Table 5, 2.13.2p3. There is no other description of this escape sequence, although the
C behavior might be implied from the following wording:

17.4.1.2p3The facilities of the Standard C Library are provided in 18 additional headers, as shown in Table 12:

266 If the active position is at or past the last defined vertical tabulation position, the behavior of the display device
is unspecified.

C90

If the active position is at or past the last defined vertical tabulation position, the behavior is unspecified.

267 Each of these escape sequences shall produce a unique implementation-defined value which can be stored escape sequence
fit in char objectin a single char object.

C++

This requirement can be deduced from 2.2p3.

268 The external representations in a text file need not be identical to the internal representations, and are outside
the scope of this International Standard.

C++

The C++ Standard does not get involved in such details.

5.2.3 Signals and interrupts

270 C++

The C++ Standard specifies, Clause 15 Exception handling, a much richer set of functionality for dealing
with exceptional behaviors. While it does not go into the details contained in this C subclause, they are likely,
of necessity, to be followed by a C++ implementation.

271 Functions shall be implemented such that they may be interrupted at any time by a signal, or may be called
by a signal handler, or both, with no alteration to earlier, but still active, invocations’ control flow (after the
interruption), function return values, or objects with automatic storage duration.

C++

This implementation requirement is not specified in the C++ Standard (1.9p9).

272 All such objects shall be maintained outside the function image (the instructions that compose the executable object storage
outside func-

tion imagerepresentation of a function) on a per-invocation basis.

January 30, 2008 v 1.1

5.2.4.1 Translation limits277

C++

The C++ Standard does not contain this requirement.

5.2.4 Environmental limits

273Both the translation and execution environments constrain the implementation of language translators andenvironmental
limits libraries.

C++

There is an informative annex which states:

Annex Bp1 Because computers are finite, C++ implementations are inevitably limited in the size of the programs they can
successfully process.

274The following summarizes the language-related environmental limits on a conforming implementation;

C++

There is an informative annex which states:

Annex Bp2 The bracketed number following each quantity is recommended as the minimum for that quantity. However,
these quantities are only guidelines and do not determine conformance.

275the library-related limits are discussed in clause 7.

C++

Clause 18.2 contains an Implementation Limits:.

5.2.4.1 Translation limits

276The implementation shall be able to translate and execute at least one program that contains at least onetranslation
limits instance of every one of the following limits:13)

C++

Annex Bp2 However, these quantities are only guidelines and do not determine conformance.

This wording appears in an informative annex, which itself has no formal status.

277— 127 nesting levels of blockslimit
block nesting

C90

15 nesting levels of compound statements, iteration control structures, and selection control structures

The number of constructs that could create a block increased between C90 and C99, including selection
statements and their associated substatements, and iteration statements and their associated bodies. Althoughblock

selection
statement

1741

block
selection sub-

statement

1742

block
iteration statement

block
loop body

use of these constructs doubles the number of blocks created in C99, the limit on the nesting of blocks has
increased by a factor of four. So, the conformance status of a program will not be adversely affected.

v 1.1 January 30, 2008

5.2.4.1 Translation limits 281

C++

The following is a non-normative specification.

Annex Bp2Nesting levels of compound statements, iteration control structures, and selection control structures [256]

278 — 63 nesting levels of conditional inclusion

C90

8 nesting levels of conditional inclusion

C++

The following is a non-normative specification.

Annex Bp2Nesting levels of conditional inclusion [256]

279 — 12 pointer, array, and function declarators (in any combinations) modifying an arithmetic, structure, union, limit
type complexityor incomplete type in a declaration

C++

The following is a non-normative specification.

Annex Bp2Pointer, array, and function declarators (in any combinations) modifying an arithmetic, structure, union, or
incomplete type in a declaration [256]

280 — 63 nesting levels of parenthesized declarators within a full declarator limit
declarator

parenthesesC90

31 nesting levels of parenthesized declarators within a full declarator

C++

The C++ Standard does not discuss declarator parentheses nesting limits.

281— 63 nesting levels of parenthesized expressions within a full expression parenthesized
expression

nesting levelsC90

31 nesting levels of parenthesized expressions within a full expression

C++

The following is a non-normative specification.

Annex Bp2

January 30, 2008 v 1.1

5.2.4.1 Translation limits285

Nesting levels of parenthesized expressions within a full expression [256]

282— 63 significant initial characters in an internal identifier or a macro name (each universal character name orinternal identifier
significant charac-
ters extended source character is considered a single character)

C90

31 significant initial characters in an internal identifier or a macro name

C++

2.10p1 All characters are significant.20)

C identifiers that differ after the last significant character will cause a diagnostic to be generated by a C++

translator.
The following is a non-normative specification.

Annex Bp2 Number of initial characters in an internal identifier or a macro name [1024]

283— 31 significant initial characters in an external identifier (each universal character name specifying a shortexternal identifier
significant charac-
ters identifier of 0000FFFF or less is considered 6 characters, each universal character name specifying a short

identifier of 00010000 or more is considered 10 characters, and each extended source character is considered
the same number of characters as the corresponding universal character name, if any)14)

C90

6 significant initial characters in an external identifier

C++

2.10p1 All characters are significant.20)

C identifiers that differ after the last significant character will cause a diagnostic to be generated by a C++

translator.
The following is a non-Normative specification.

Annex Bp2 Number of initial characters in an external identifier [1024]

285— 4095 external identifiers in one translation unitlimit
external identi-
fiers C90

v 1.1 January 30, 2008

5.2.4.1 Translation limits 288

511 external identifiers in one translation unit

C++

The following is a non-normative specification.

Annex Bp2External identifiers in one translation unit [65536]

286 — 511 identifiers with block scope declared in one block identifiers
number in

block scopeC90

127 identifiers with block scope declared in one block

C++

The following is a non-normative specification.

Annex Bp2Identifiers with block scope declared in one block [1024]

287— 4095 macro identifiers simultaneously defined in one preprocessing translation unit limit
macro definitions

C90

1024 macro identifiers simultaneously defined in one translation unit

C++

The following is a non-normative specification.

Annex Bp2Macro identifiers simultaneously defined in one translation unit [65536]

288 — 127 parameters in one function definition limit
parameters
in definitionC90

31 parameters in one function definition

C++

The following is a non-normative specification.

Annex Bp2

January 30, 2008 v 1.1

5.2.4.1 Translation limits292

Parameters in one function definition [256]

289— 127 arguments in one function callfunction call
number of argu-
ments C90

31 arguments in one function call

C++

The following is a non-normative specification.

Annex Bp2 Arguments in one function call [256]

290— 127 parameters in one macro definitionlimit
macro parame-
ters C90

31 parameters in one macro definition

C++

The following is a non-normative specification.

Annex Bp2 Parameters in one macro definition [256]

291— 127 arguments in one macro invocationlimit
arguments in
macro invocation C90

31 arguments in one macro invocation

C++

The following is a non-normative specification.

Annex Bp2 Arguments in one macro invocation [256]

292— 4095 characters in a logical source linelimit
characters on
line C90

v 1.1 January 30, 2008

5.2.4.1 Translation limits 295

509 characters in a logical source line

C++

The following is a non-normative specification.

Annex Bp2Characters in a logical source line [65536]

293 — 4095 characters in a character string literal or wide string literal (after concatenation) limit
string literal

C90

509 characters in a character string literal or wide string literal (after concatenation)

C++

The following is a non-normative specification.

Annex Bp2Characters in a character string literal or wide string literal (after concatenation) [65536]

294— 65535 bytes in an object (in a hosted environment only) limit
minimum

object sizeC90

32767 bytes in an object (in a hosted environment only)

C++

The following is a non-normative specification.

Annex Bp2Size of an object [262144]

295 — 15 nesting levels for #included files limit
#include nesting

C90

8 nesting levels for #included files

C++

The following is a non-normative specification.

Annex Bp2

January 30, 2008 v 1.1

5.2.4.1 Translation limits299

Nesting levels for #included files [256]

296— 1023 case labels for a switch statement (excluding those for any nested switch statements)limit
case labels

C90

257 case labels for a switch statement (excluding those for any nested switch statements)

The intent here was to support switch statements that included 256 unsigned character values plus EOFswitch
statement

1748

(usually implemented as -1).

C++

The following is a non-normative specification.

Annex Bp2 Case labels for a switch statement (excluding those for any nested switch statements) [16384]

297— 1023 members in a single structure or unionlimit
members in
struct/union C90

127 members in a single structure or union

C++

The following is a non-normative specification.

Annex Bp2 Data members in a single class, structure or union [16384]

298— 1023 enumeration constants in a single enumerationlimit
enumeration
constants C90

127 enumeration constants in a single enumeration

C++

The following is a non-normative specification.

Annex Bp2 Enumeration constants in a single enumeration [4096]

299— 63 levels of nested structure or union definitions in a single struct-declaration-listlimit
struct/union nest-
ing C90

v 1.1 January 30, 2008

5.2.4.2.1 Sizes of integer types <limits.h> 303

15 levels of nested structure or union definitions in a single struct-declaration-list

C++

The following is a non-normative specification.

Annex Bp2Levels of nested class, structure, or union definitions in a single struct-declaration-list [256]

5.2.4.2 Numerical limits

300 An implementation is required to document all the limits specified in this subclause, which are specified in the numerical limits

headers <limits.h> and <float.h>.

C90

A conforming implementation shall document all the limits specified in this subclause, which are specified in the
headers <limits.h> and <float.h>.

C++

18.2.2p2Header <climits> (Table 16): . . . The contents are the same as the Standard C library header <limits.h>.

18.2.2p4Header <cfloat> (Table 17): . . . The contents are the same as the Standard C library header <float.h>.

301 Additional limits are specified in <stdint.h>.

C90
Support for these limits and the header that contains them is new in C99.

C++

Support for these limits and the header that contains them is new in C99 and is not available in C++.

5.2.4.2.1 Sizes of integer types <limits.h>

303 The values given below shall be replaced by constant expressions suitable for use in #if preprocessing integer types
sizesdirectives.

C++

17.4.4.2p2All object-like macros defined by the Standard C library and described in this clause as expanding to integral
constant expressions are also suitable for use in #if preprocessing directives, unless explicitly stated otherwise.

18.2.2p2

January 30, 2008 v 1.1

5.2.4.2.2 Characteristics of floating types <float.h>337

Header <climits> (Table 16): . . . The contents are the same as the Standard C library header <limits.h>

323— minimum value for an object of type long long int

LLONG_MIN -9223372036854775807 // -(263-1)

C90
Support for the type long long and its associated macros is new in C99.

C++

The type long long is not available in C++ (although many implementations support it).

324— maximum value for an object of type long long int

LLONG_MAX +9223372036854775807 // 263-1

C90
Support for the type long long and its associated macros is new in C99.

C++

The type long long is not available in C++ (although many implementations support it).

325— maximum value for an object of type unsigned long long int

ULLONG_MAX 18446744073709551615 // 264-1

C90
Support for the type unsigned long long and its associated macros is new in C99.

C++

The type unsigned long long is not available in C++.

328The value UCHAR_MAX shall equal 2CHAR_BIT − 1.UCHAR_MAX
value

C90
This requirement was not explicitly specified in the C90 Standard.

C++

Like C90, this requirement is not explicitly specified in the C++ Standard.

5.2.4.2.2 Characteristics of floating types <float.h>

330The characteristics of floating types are defined in terms of a model that describes a representation of floating-floating types
characteristics point numbers and values that provide information about an implementation’s floating-point arithmetic.16)

C++

18.2.2p4 Header <cfloat> (Table 17): . . . The contents are the same as the Standard C library header <float.h>

v 1.1 January 30, 2008

5.2.4.2.2 Characteristics of floating types <float.h> 340

335 p precision (the number of base-b digits in the significand) precision
floating-point

C++

The term significand is not used in the C++ Standard.

337 A floating-point number (x) is defined by the following model: floating-point
model

x = sbe
p∑

k=1

fkb
−k, emin ≤ e ≤ emax

C90

A normalized floating-point number x (f1 > 0 if x 6= 0) is defined by the following model:

x = s×be×
p∑

k=1

fk×b−k, emin ≤ e ≤ emax

The C90 Standard did not explicitly deal with subnormal or unnormalized floating-point numbers.

C++

The C++ document does not contain any description of a floating-point model. But, Clause 18.2.2 explicitly
refers the reader to ISO C90 subclause 5.2.4.2.2

338 In addition to normalized floating-point numbers (f1 > 0 if x 6= 0), floating types may be able to contain other floating types
can representkinds of floating-point numbers, such as subnormal floating-point numbers (x 6= 0, e = emin, f1 = 0) and

unnormalized floating-point numbers (x 6= 0, e > emin, f1 = 0), and values that are not floating-point numbers,
such as infinities and NaNs.

C90
The C90 Standard does not mention these kinds of floating-point numbers. However, the execution environ-
ments for C90 programs are likely to be the same as C99 in terms of their support for IEC 60559.

C++

The C++ Standard does not go into this level of detail.

339 A NaN is an encoding signifying Not-a-Number. NaN

C90
This concept was not described in the C90 Standard.

C++

Although this concept was not described in C90, C++ does include the concept of NaN.

18.2.1.2p34 Tem-
plate class nu-
meric_limits

static const bool has_quiet_NaN;

True if the type has a representation for a quiet (non-signaling) “Not a Number.”193)

18.2.2.1p37
static const bool has_signaling_NaN;

True if the type has a representation for a signaling “Not a Number.”194)

January 30, 2008 v 1.1

5.2.4.2.2 Characteristics of floating types <float.h>346

340A quiet NaN propagates through almost every arithmetic operation without raising a floating-point exception;NaN
raising an ex-
ception C90

The concept of NaN was not discussed in the C90 Standard.

C++

18.2.1.2p34
static const bool has_quiet_NaN;

True if the type has a representation for a quiet (non-signaling) “Not a Number.”193)

341a signaling NaN generally raises a floating-point exception when occurring as an arithmetic operand.17)

C++

18.2.1.2p37
static const bool has_signaling_NaN;

True if the type has a representation for a signaling “Not a Number.”194

34516) The floating-point model is intended to clarify the description of each floating-point characteristic and doesfootnote
16 not require the floating-point arithmetic of the implementation to be identical.

C++

The C++ Standard does not explicitly describe a floating-point model. However, it does include the template
class numeric_limits. This provides a mechanism for accessing the values of many, but not all, of the
characteristics used by the C model to describe its floating-point model.

346The accuracy of the floating-point operations (+, -, *, /) and of the library functions in <math.h> andfloating-point
operations accu-
racy <complex.h> that return floating-point results is implementation-defined , as is the accuracy of the con-

version between floating-point internal representations and string representations performed by the library
routine in <stdio.h>, <stdlib.h> and <wchar.h>.

C90
In response to DR #063 the Committee stated (while the Committee did revisit this issue during the C99
revision of the C Standard, there was no change of requirements):

DR #063 Probably the most useful response would be to amend the C Standard by adding two requirements on implemen-
tations:

Require that an implementation document the maximum errors it permits in arithmetic operations and in
evaluating math functions. These should be expressed in terms of “units in the least-significant position” (ULP)
or “lost bits of precision.”

Establish an upper bound for these errors that all implementations must adhere to. The state of the art, as the
Committee understands it, is:

correctly rounded results for arithmetic operations (no loss of precision)

1 ULP for functions such as sqrt, sin, and cos (loss of 1 bit of precision)

v 1.1 January 30, 2008

5.2.4.2.2 Characteristics of floating types <float.h> 350

4–6 ULP (loss of 2–3 bits of precision) for other math functions.

Since not all commercially viable machines and implementations meet these exacting requirements, the C
Standard should be somewhat more liberal.

The Committee would, however, suggest a requirement no more liberal than a loss of 3 bits of precision, out
of kindness to users. An implementation with worse performance can always conform by providing a more
conservative version of <float.h>, even if that is not a desirable approach in the general case. The Committee
should revisit this issue during the revision of the C Standard.

C++

The C++ Standard says nothing on this issue.

347 The implementation may state that the accuracy is unknown.

C++

The C++ Standard does not explicitly give this permission.

348 All integer values in the <float.h> header, except FLT_ROUNDS, shall be constant expressions suitable for use float.h
suitable for #ifin #if preprocessing directives;

C90

Of the values in the <float.h> header, FLT_RADIX shall be a constant expression suitable for use in #if
preprocessing directives;

C99 requires a larger number of values to be constant expressions suitable for use in a #if preprocessing
directive and in static and aggregate initializers.

C++

The requirement in C++ only applies if the header <cfloat> is used (17.4.1.2p3). While this requirement
does not apply to the contents of the header <float.h>, it is very likely that implementations will meet it
and no difference is flagged here. The namespace issues associated with using <cfloat> do not apply to
names defined as macros in C (17.4.1.2p4)

17.4.4.2p2All object-like macros defined by the Standard C library and described in this clause as expanding to integral
constant expressions are also suitable for use in #if preprocessing directives, unless explicitly stated otherwise.

The C++ wording does not specify the C99 Standard and some implementations may only support the
requirements specified in C90.

349 all floating values shall be constant expressions.

C90

all other values need not be constant expressions.

This specification has become more restrictive, from the implementations point of view, in C99.

C++

It is possible that some implementations will only meet the requirements contained in the C90 Standard.

January 30, 2008 v 1.1

5.2.4.2.2 Characteristics of floating types <float.h>353

350All except DECIMAL_DIG, FLT_EVAL_METHOD, FLT_RADIX, and FLT_ROUNDS have separate names for all three
floating-point types.

C90
Support for DECIMAL_DIG and FLT_EVAL_METHOD is new in C99. The FLT_EVAL_METHOD macro appears to
add functionality that could cause a change of behavior in existing programs. However, in practice it provides
access to information on an implementation’s behavior that was not previously available at the source code
level. Implementations are not likely to change their behavior because of this macro, other than to support it.

C++

It is possible that some implementations will only meet the requirements contained in the C90 Standard.

351The floating-point model representation is provided for all values except FLT_EVAL_METHOD and FLT_ROUNDS.

C90
Support for FLT_EVAL_METHOD is new in C99.

C++

It is possible that some implementations will only meet the requirements contained in the C90 Standard.

352The rounding mode for floating-point addition is characterized by the implementation-defined value ofFLT_ROUNDS

FLT_ROUNDS:18)

-1 indeterminable
0 toward zero
1 to nearest
2 toward positive infinity
3 toward negative infinity

All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.

C++

It is possible that some implementations will only meet the requirements contained in the C90 Standard.
The C++ header <limits> also contains the enumerated type:

18.2.1.3
namespace std {

enum float_round_style {
round_indeterminable = -1,
round_toward_zero = 0,
round_to_nearest = 1,
round_toward_infinity = 2,
round_toward_neg_infinity = 3

};
}

which is referenced by the following member, which exists for every specialization of an arithmetic type (in
theory this allows every floating-point type to support a different rounding mode):

18.2.1.2p62 Meaningful for all floating point types.

static const float_round_style round_style;

The rounding style for the type.206)

v 1.1 January 30, 2008

5.2.4.2.2 Characteristics of floating types <float.h> 358

353
floating operands
evaluation formatThe Except for assignment and cast (which remove all extra range and precision), the values of operations

with floating operands and values subject to the usual arithmetic conversions and of floating constants are
evaluated to a format whose range and precision may be greater than required by the type.

C90

6.2.1.5The values of floating operands and of the results of floating expressions may be represented in greater precision
and range than that required by the type;

This wording allows wider representations to be used for floating-point operands and expressions. It could
also be interpreted (somewhat liberally) to support the idea that C90 permitted floating constants to be
represented in wider formats where the usual arithmetic conversions applied.
Having the representation of floating constants change depending on how an implementation chooses to
specify FLT_EVAL_METHOD is new in C99.

C++

Like C90, the FLT_EVAL_METHOD macro is not available in C++.

354 The use of evaluation formats is characterized by the implementation-defined value of FLT_EVAL_METHOD:19)

FLT_EVAL_METHOD
C90
Support for the FLT_EVAL_METHOD macro is new in C99. Its significant attendant baggage was also present
in C90 implementations, but was explicitly not highlighted in that standard.

C++

Support for the FLT_EVAL_METHOD macro is new in C99 and it is not available in C++. However, it is likely
that the implementation of floating point in C++ will be the same as in C.

358 For implementations that do not support IEC 60559:1989, the terms quiet NaN and signaling NaN are intended
to apply to encodings with similar behavior.

C90
The concept of NaN is new, in terms of being explicitly discussed, in C99.

C++

18.2.1.2p34
static const bool has_quiet_NaN;

True if the type has a representation for a quiet (non-signaling) “Not a Number.”193)

Meaningful for all floating point types.

Shall be true for all specializations in which is_iec559 != false.

18.2.1.2p37
static const bool has_signaling_NaN;

True if the type has a representation for a signaling “Not a Number.”194)

Meaningful for all floating point types.

Shall be true for all specializations in which is_iec559 != false.

January 30, 2008 v 1.1

5.2.4.2.2 Characteristics of floating types <float.h>366

18.2.1.2p52
static const bool is_iec559;

True if and only if the type adheres to IEC 559 standard.201)

The C++ Standard requires NaNs to be supported if IEC 60559 is supported, but says nothing about the
situation where that standard is not supported by an implementation.

35918) Evaluation of FLT_ROUNDS correctly reflects any execution-time change of rounding mode through thefootnote
18 function fesetround in <fenv.h>.

C90
Support for the header <fenv.h> is new in C99. The C90 Standard did not provide a mechanism for changing
the rounding direction.

C++

Support for the header <fenv.h> and the fesetround function is new in C99 and is not specified in the C++

Standard.

36019) The evaluation method determines evaluation formats of expressions involving all floating types, not justfootnote
19 real types.

C90
Support for complex types is new in C99.

C++

The complex types are a template class in C++. The definitions of the instantiation of these classes do not
specify that the evaluation format shall be the same as for the real types. But then, the C++ Standard does not
specify the evaluation format for the real types.

361For example, if FLT_EVAL_METHOD is 1, then the product of two float _Complex operands is represented in the
double _Complex format, and its parts are evaluated to double.

C++

The C++ Standard does not specify a FLT_EVAL_METHOD mechanism.

365The values given in the following list shall be replaced by constant expressions with implementation-defined
values that are greater or equal in magnitude (absolute value) to those shown, with the same sign:

C90
In C90 the only expression that was required to be a constant expression was FLT_RADIX. It was explicitly
stated that the others need not be constant expressions; however, in most implementations, the values were
constant expressions.

C++

18.2.1p3 For all members declared static const in the numeric_limits template, specializations shall define these
values in such a way that they are usable as integral constant expressions.

v 1.1 January 30, 2008

5.2.4.2.2 Characteristics of floating types <float.h> 369

366 — radix of exponent representation, b FLT_RADIX

FLT_RADIX 2

C++

18.2.1.2p16
static const int radix;

For floating types, specifies the base or radix of the exponent representation (often 2).185)

368 — number of decimal digits, n, such that any floating-point number in the widest supported floating type with DECIMAL_DIG
macro

pmax radix b digits can be rounded to a floating-point number with n decimal digits and back again without
change to the value,{

pmax log10 b if b is a power of 10
d1 + pmax log10 be otherwise

DECIMAL_DIG 10

C90
Support for the DECIMAL_DIG macro is new in C99.

C++

Support for the DECIMAL_DIG macro is new in C99 and specified in the C++ Standard.

369 — number of decimal digits, q, such that any floating-point number with q decimal digits can be rounded into a *_DIG
macrosfloating-point number with p radix b digits and back again without change to the q decimal digits,{

pmax log10 b if b is a power of 10
b(p− 1) log10 bc otherwise

FLT_DIG 6
DBL_DIG 10
LDBL_DIG 10

C++

18.2.1.2p9
static const int digits10;

Number of base 10 digits that can be represented without change.

Footnote 184Equivalent to FLT_DIG, DBL_DIG, LDBL_DIG.

18.2.2p4

January 30, 2008 v 1.1

5.2.4.2.2 Characteristics of floating types <float.h>371

Header <cfloat> (Table 17): . . . The contents are the same as the Standard C library header <float.h>.

370— minimum negative integer such that FLT_RADIX raised to one less than that power is a normalized*_MIN_EXP

floating-point number, emin

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

C++

18.2.1.2p23
static const int min_exponent;

Minimum negative integer such that radix raised to that power is in the range of normalised floating point
numbers.189)

Footnote 189 Equivalent to FLT_MIN_EXP, DBL_MIN_EXP, LDBL_MIN_EXP.

18.2.2p4 Header <cfloat> (Table 17): . . . The contents are the same as the Standard C library header <float.h>.

371— minimum negative integer such that 10 raised to that power is in the range of normalized floating-point*_MIN_10_EXP

numbers, dlog10 b
emin−1e

FLT_MIN_10_EXP -37
DBL_MIN_10_EXP -37
LDBL_MIN_10_EXP -37

C++

18.2.1.2p25
static const int min_exponent10;

Minimum negative integer such that 10 raised to that power is in the range of normalised floating point
numbers.190)

Footnote 190 Equivalent to FLT_MIN_10_EXP, DBL_MIN_10_EXP, LDBL_MIN_10_EXP.

18.2.2p4

v 1.1 January 30, 2008

5.2.4.2.2 Characteristics of floating types <float.h> 373

Header <cfloat> (Table 17): . . . The contents are the same as the Standard C library header <float.h>.

372 — maximum integer such that FLT_RADIX raised to one less than that power is a representable finite floating- *_MAX_EXP

point number, emax

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

C++

18.2.1.2p27
static const int max_exponent;

Maximum positive integer such that radix raised to the power one less than that integer is a representable finite
floating point number.191)

Footnote 191Equivalent to FLT_MAX_EXP, DBL_MAX_EXP, LDBL_MAX_EXP.

18.2.2p4Header <cfloat> (Table 17): . . . The contents are the same as the Standard C library header <float.h>.

373 — maximum integer such that 10 raised to that power is in the range of representable finite floating-point *_MAX_10_EXP

numbers, blog10((1− b−p)bemax)c

FLT_MAX_10_EXP +37
DBL_MAX_10_EXP +37
LDBL_MAX_10_EXP +37

C++

18.2.1.2p29
static const int max_exponent10;

Maximum positive integer such that 10 raised to that power is in the range of normalised floating point numbers.

Footnote 192Equivalent to FLT_MAX_10_EXP, DBL_MAX_10_EXP, LDBL_MAX_10_EXP.

18.2.2

January 30, 2008 v 1.1

5.2.4.2.2 Characteristics of floating types <float.h>377

Header <cfloat> (Table 17): . . . The contents are the same as the Standard C library header <float.h>.

374The values given in the following list shall be replaced by constant expressions with implementation-definedfloating values
listed values that are greater than or equal to those shown:

C90
C90 did not contain the requirement that the values be constant expressions.

C++

This requirement is not specified in the C++ Standard, which refers to the C90 Standard by reference.

375— maximum representable finite floating-point number, (1− b−p)bemax

FLT_MAX 1E+37
DBL_MAX 1E+37
LDBL_MAX 1E+37

C++

18.2.1.2p4
static T max() throw();

Maximum finite value.182

Footnote 182 Equivalent to CHAR_MAX, SHRT_MAX, FLT_MAX, DBL_MAX, etc.

18.2.2p4 Header <cfloat> (Table 17): . . . The contents are the same as the Standard C library header <float.h>.

377— the difference between 1 and the least value greater than 1 that is representable in the given floating point*_EPSILON

type, b1−p

FLT_EPSILON 1E-5
DBL_EPSILON 1E-9
LDBL_EPSILON 1E-9

C++

18.2.1.2p20
static T epsilon() throw();

Machine epsilon: the difference between 1 and the least value greater than 1 that is representable.187)

Footnote 187

v 1.1 January 30, 2008

5.2.4.2.2 Characteristics of floating types <float.h> 381

Equivalent to FLT_EPSILON, DBL_EPSILON, LDBL_EPSILON.

18.2.2p4Header <cfloat> (Table 17): . . . The contents are the same as the Standard C library header <float.h>.

378 — minimum normalized positive floating-point number, bemin−1 *_MIN
macros

FLT_MIN 1E-37
DBL_MIN 1E-37
LDBL_MIN 1E-37

C++

18.2.1.2p1
static T min() throw();

Maximum finite value.181)

Footnote 181Equivalent to CHAR_MIN, SHRT_MIN, FLT_MIN, DBL_MIN, etc.

18.2.2p4Header <cfloat> (Table 17): . . . The contents are the same as the Standard C library header <float.h>.

Recommended practice

379 Conversion from (at least) double to decimal with DECIMAL_DIG digits and back should be the identity function. DECIMAL_DIG
conversion

recommended
practiceC90

The Recommended practice clauses are new in the C99 Standard.

C++

There is no such macro, or requirement specified in the C++ Standard.

381 EXAMPLE 2 The following describes floating-point representations that also meet the requirements for EXAMPLE
IEC 60559

floating-pointsingle-precision and double-precision normalized numbers in IEC 60559,20) and the appropriate values in a
<float.h> header for types float and double:

xf = s2e
24∑

k=1

fk2−k, −125 ≤ e ≤ +128

xd = s2e
53∑

k=1

fk2−k, −1021 ≤ e ≤ +1024

FLT_RADIX 2
DECIMAL_DIG 17
FLT_MANT_DIG 24

January 30, 2008 v 1.1

6.1 Notation384

FLT_EPSILON 1.19209290E-07F // decimal constant
FLT_EPSILON 0X1P-23F // hex constant
FLT_DIG 6
FLT_MIN_EXP -125
FLT_MIN 1.17549435E-38F // decimal constant
FLT_MIN 0X1P-126F // hex constant

FLT_MIN_10_EXP -37
FLT_MAX_EXP +128
FLT_MAX 3.40282347E+38F // decimal constant
FLT_MAX 0X1.fffffeP127F // hex constant
FLT_MAX_10_EXP +38
DBL_MANT_DIG 53
DBL_EPSILON 2.2204460492503131E-16 // decimal constant
DBL_EPSILON 0X1P-52 // hex constant
DBL_DIG 15
DBL_MIN_EXP -1021
DBL_MIN 2.2250738585072014E-308 // decimal constant
DBL_MIN 0X1P-1022 // hex constant
DBL_MIN_10_EXP -307
DBL_MAX_EXP +1024
DBL_MAX 1.7976931348623157E+308 // decimal constant
DBL_MAX 0X1.fffffffffffffP1023 // hex constant
DBL_MAX_10_EXP +308

If a type wider than double were supported, then DECIMAL_DIG would be greater than 17. For example, if the
widest type were to use the minimal-width IEC 60559 double-extended format (64 bits of precision), then
DECIMAL_DIG would be 21.

C90
The C90 wording referred to the ANSI/IEEE-754–1985 standard.

6. Language
6.1 Notation

384In the syntax notation used in this clause, syntactic categories (nonterminals) are indicated by italic type,
and literal words and character set members (terminals) by bold type.

C++

1.6p1 In the syntax notation used in this International Standard, syntactic categories are indicated by italic type, and
literal words and characters in constant width type.

The C++ grammar contains significantly more syntactic ambiguities than C. Some implementations have
used mainly syntactic approaches to resolving these,[6] while others make use of semantic information to
guide the parse.[1] For instance, knowing what an identifier has been declared as, simplifies the parsing of the
following:

v 1.1 January 30, 2008

6.2.1 Scopes of identifiers 400

1 template_name < a , b > - 5 // equivalent to (template_name < a , b >) - 5)
2 non_template_name < a , b > - 5 // equivalent to (non_template_name < a) , (b > - 5)

385 A colon (:) following a nonterminal introduces its definition.

C++

The C++ Standard does not go into this level of detail (although it does use this notation).

388 When syntactic categories are referred to in the main text, they are not italicized and words are separated by
spaces instead of hyphens.

C90
This convention was not explicitly specified in the C90 Standard.

C++

The C++ Standard does not explicitly specify the conventions used. However, based on the examples given in
clause 1.6 and usage within the standard, the conventions used appear to be the reverse of those used in C
(i.e., syntactic categories are italicized and words are separated by hyphens).

389 A summary of the language syntax is given in annex A.

C90
The summary appeared in Annex B of the C90 Standard, and this fact was not pointed out in the normative
text.

6.2 Concepts

6.2.1 Scopes of identifiers

392 a tag or a member of a structure, union, or enumeration;

C++

The C++ Standard does not define the term tag. It uses the terms enum-name (7.2p1) for enumeration
definitions and class-name (9p1) for classes.

396 or a macro parameter. identifier
macro parameter

C++

The C++ Standard does not list macro parameters as one of the entities that can be denoted by an identifier.

397 The same identifier can denote different entities at different points in the program. identifier
denote differ-

ent entitiesC++

The C++ Standard does not explicitly state this possibility, although it does include wording (e.g., 3.3p4) that
implies it is possible.

398 A member of an enumeration is called an enumeration constant. enumera-
tion constant

C++

There is no such explicit definition in the C++ Standard (7.2p1 comes close), although the term enumeration
constant is used.

January 30, 2008 v 1.1

6.2.1 Scopes of identifiers407

400For each different entity that an identifier designates, the identifier is visible (i.e., can be used) only within avisible
identifierscope region of program text called its scope.

C++

3.3p1 In general, each particular name is valid only within some possibly discontiguous portion of program text called
its scope.

3.3p4 Local extern declarations (3.5) may introduce a name into the declarative region where the declaration appears
and also introduce a (possibly not visible) name into an enclosing namespace; these restrictions apply to both
regions.

3.3.7p5 If a name is in scope and is not hidden it is said to be visible.

401Different entities designated by the same identifier either have different scopes, or are in different namesame identifier

spaces.

C90
In all but one case, duplicate label names having the same identifier designate different entities in the same
scope, or in the same name space, was a constraint violation in C90. Having the same identifier denote two
different labels in the same function caused undefined behavior. The wording in C99 changed to make this
case a constraint violation.label name

unique
1725

C++

The C++ Standard does not explicitly make this observation, although it does include wording (e.g., 3.6.1p3)
that implies it is possible.

402There are four kinds of scopes: function, file, block, and function prototype.scope
kinds of

C++

The C++ Standard does not list the possible scopes in a single sentence. There are subclauses of 3.3 that
discuss the five kinds of C++ scope: function, namespace, local, function prototype, and class. A C declaration
at file scope is said to have namespace scope or global scope in C++. A C declaration with block scope is
said to have local scope in C++. Class scope is what appears inside the curly braces in a structure/union
declaration (or other types of declaration in C++).
Given the following declaration, at file scope:

1 struct S {
2 int m; /* has file scope */
3 // has class scope
4 } v; /* has file scope */
5 // has namespace scope

407If the declarator or type specifier that declares the identifier appears outside of any block or list of parameters,file scope

the identifier has file scope, which terminates at the end of the translation unit.

v 1.1 January 30, 2008

6.2.1 Scopes of identifiers 414

C++

3.3.5p3A name declared outside all named or unnamed namespaces (7.3), blocks (6.3), function declarations (8.3.5),
function definitions (8.4) and classes (9) has global namespace scope (also called global scope). The potential
scope of such a name begins at its point of declaration (3.3.1) and ends at the end of the translation unit that is
its declarative region.

408 If the declarator or type specifier that declares the identifier appears inside a block or within the list of block scope
terminatesparameter declarations in a function definition, the identifier has block scope, which terminates at the end of

the associated block.

C++

3.3.2p1A name declared in a block (6.3) is local to that block. Its potential scope begins at its point of declaration
(3.3.1) and ends at the end of its declarative region.

3.3.2p2The potential scope of a function parameter name in a function definition (8.4) begins at its point of declaration.
. . . , else it ends at the outermost block of the function definition.

410 If an identifier designates two different entities in the same name space, the scopes might overlap. scope
overlapping

C90
This sentence does not appear in the C90 Standard, but the situation it describes could have occurred in C90.

C++

3.3p1The scope of a declaration is the same as its potential scope unless the potential scope contains another
declaration of the same name.

411 If so, the scope of one entity (the inner scope) will be a strict subset of the scope of the other entity (the outer scope
innerscope
outer

scope).

C++

The C observation can be inferred from the C++ wording.

3.3p1In that case, the potential scope of the declaration in the inner (contained) declarative region is excluded from
the scope of the declaration in the outer (containing) declarative region.

413 the entity declared in the outer scope is hidden (and not visible) within the inner scope. outer scope
identifier hidden

January 30, 2008 v 1.1

6.2.1 Scopes of identifiers417

C++

The C rules are a subset of those for C++ (3.3p1), which include other constructs. For instance, the scope
resolution operator, ::, allows a file scope identifier to be accessed, but it does not introduce that identifier
into the current scope.

414Unless explicitly stated otherwise, where this International Standard uses the term “identifier” to refer to
some entity (as opposed to the syntactic construct), it refers to the entity in the relevant name space whose
declaration is visible at the point the identifier occurs.

C90
There is no such statement in the C90 Standard.

C++

There is no such statement in the C++ Standard (which does contain uses of identifier that refer to its syntactic
form).

415Two identifiers have the same scope if and only if their scopes terminate at the same point.scope
same

C90
Although the wording of this sentence is the same in C90 and C99, there are more blocks available to have
their scopes terminated in C99. The issues caused by this difference are discussed in the relevant sentences
for iteration-statement, loop body, a selection-statement a substatement associated with a selectionblock

iteration statement
block

loop body
block

selection
statement

1741
statement.

block
selection sub-

statement

1742
C++

The C++ Standard uses the term same scope (in the sense “in the same scope”, but does not provide a definition
for it. Possible interpretations include using the common English usage of the word same or interpreting the
following wording

3.3p1 In general, each particular name is valid only within some possibly discontiguous portion of program text
called its scope. To determine the scope of a declaration, it is sometimes convenient to refer to the potential
scope of a declaration. The scope of a declaration is the same as its potential scope unless the potential scope
contains another declaration of the same name. In that case, the potential scope of the declaration in the inner
(contained) declarative region is excluded from the scope of the declaration in the outer (containing) declarative
region.

to imply that the scope of the first declaration of a is not the same as the scope of b in the following:

1 {
2 int a;
3 int b;
4 {
5 int a;
6 }
7 }

416Structure, union, and enumeration tags have scope that begins just after the appearance of the tag in a typetag
scope begins specifier that declares the tag.

C++

The C++ Standard defines the term point of declaration (3.3.1p1). The C++ point of declaration of the identifier
that C refers to as a tag is the same (3.3.1p5). The scope of this identifier starts at the same place in C and
C++ (3.3.2p1, 3.3.5p3).

v 1.1 January 30, 2008

6.2.2 Linkages of identifiers 421

417 Each enumeration constant has scope that begins just after the appearance of its defining enumerator in an enumera-
tion constant
scope beginsenumerator list.

C++

3.3.1p3The point of declaration for an enumerator is immediately after its enumerator-definition. [Example:

const int x = 12;

{ enum { x = x }; }

Here, the enumerator x is initialized with the value of the constant x, namely 12.]

In C, the first declaration of x is not a constant expression. Replacing it by a definition of an enumeration of
the same name would have an equivalent, conforming effect in C.

418 Any other identifier has scope that begins just after the completion of its declarator. identifier
scope begins

C++

The C++ Standard defines the potential scope of an identifier having either local (3.3.2p1) or global (3.3.5p3)
scope to begin at its point of declaration (3.3.1p1). However, there is no such specification for identifiers
having function prototype scope (which means that in the following declaration the second occurrence of p1
might not be considered to be in scope).

1 void f(int p1, int p2@lsquare[]sizeof(p1)@rsquare[]);

No difference is flagged here because it is not thought likely that C++ implementation will behave different
from C implementations in this case.

6.2.2 Linkages of identifiers

420 An identifier declared in different scopes or in the same scope more than once can be made to refer to the linkage

same object or function by a process called linkage.21)

C++

The C++ Standard also defines the term linkage. However, it is much less relaxed about multiple declarations
of the same identifier (3.3p4).

3.5p2A name is said to have linkage when it might denote the same object, reference, function, type, template,
namespace or value as a name introduced by a declaration in another scope:

421 There are three kinds of linkage: external, internal, and none. linkage
kinds of

C++

The C++ Standard defines the three kinds of linkage: external, internal, and no linkage. However, it also
defines the concept of language linkage:

7.5p1All function types, function names, and variable names have a language linkage. [Note: Some of the properties
associated with an entity with language linkage are specific to each implementation and are not described here.
For example, a particular language linkage may be associated with a particular form of representing names of

January 30, 2008 v 1.1

6.2.2 Linkages of identifiers424

objects and functions with external linkage, or with a particular calling convention, etc.] The default language
linkage of all function types, function names, and variable names is C++ language linkage. Two function types
with different language linkages are distinct types even if they are otherwise identical.

422In the set of translation units and libraries that constitutes an entire program, each declaration of a particularobject
external linkage
denotes same
function
external linkage
denotes same

identifier with external linkage denotes the same object or function.

C++

The situation in C++ is complicated by its explicit support for linkage to identifiers whose definition occurs in
other languages and its support for overloaded functions (which is based on a function’s signature (1.3.10)
rather than its name). As the following references show, the C++ Standard does not appear to explicitly
specify the same requirements as C.

3.2p3 Every program shall contain exactly one definition of every non-inline function or object that is used in that
program; no diagnostic required. The definition can appear explicitly in the program, it can be found in the
standard or a user-defined library, or (when appropriate) it is implicitly defined (see 12.1, 12.4 and 12.8). An
inline function shall be defined in every translation unit in which it is used.

Some of the consequences of the C++ one definition rule are discussed elsewhere.C++
one definition rule

1350

3.5p2 A name is said to have linkage when it might denote the same object, reference, function, type, template,
namespace or value as a name introduced by a declaration in another scope:

— When a name has external linkage, the entity it denotes can be referred to by names from scopes of other
translation units or from other scopes of the same translation unit.

7.5p6 At most one function with a particular name can have C language linkage.

424Each declaration of an identifier with no linkage denotes a unique entity.no linkage
identifier decla-
ration is unique C++

The C++ one definition rule covers most cases:

3.2p1 No translation unit shall contain more than one definition of any variable, function, class type, enumeration type
or template.

However, there is an exception:

7.1.3p2 In a given scope, a typedef specifier can be used to redefine the name of any type declared in that scope to
refer to the type to which it already refers. [Example:

typedef struct s { /* ... */ } s;
typedef int I;
typedef int I;
typedef I I;

—end example]

v 1.1 January 30, 2008

6.2.2 Linkages of identifiers 428

Source developed using a C++ translator may contain duplicate typedef names that will generate a constraint
violation if processed by a C translator.

The following does not prohibit names from the same scope denoting the same entity:

3.5p2A name is said to have linkage when it might denote the same object, reference, function, type, template,
namespace or value as a name introduced by a declaration in another scope:

— When a name has no linkage, the entity it denotes cannot be referred to by names from other scopes.

This issue is also discussed elsewhere. 1350 declaration
only one if no
linkage

425 If the declaration of a file scope identifier for an object or a function contains the storage-class specifier static, static
internal linkagethe identifier has internal linkage.22)

C++

3.5p3A name having namespace scope (3.3.5) has internal linkage if it is the name of

— an object, reference, function or function template that is explicitly declared static or,

— an object or reference that is explicitly declared const and neither explicitly declared extern nor previously
declared to have external linkage; or

1 const int glob; /* external linkage */
2 // internal linkage

Adhering to the guideline recommendations dealing with textually locating declarations in a header file ?? identifier
declared in one file

and including these headers, ensures that this difference in behavior does not occur (or will at least cause a
?? identifier

definition
shall #include

diagnostic to be generated if they do).

426 For an identifier declared with the storage-class specifier extern in a scope in which a prior declaration of that extern identifier
linkage same as
prior declarationidentifier is visible,23) if the prior declaration specifies internal or external linkage, the linkage of the identifier at

the later declaration is the same as the linkage specified at the prior declaration.

C90
The wording in the C90 Standard was changed to its current form by the response to DR #011.

427 21) There is no linkage between different identifiers. footnote
21

C++

The C++ Standard says this the other way around.

3.5p2A name is said to have linkage when it might denote the same object, reference, function, type, template,
namespace or value as a name introduced by a declaration in another scope:

428 22) A function declaration can contain the storage-class specifier static only if it is at file scope; see 6.7.1. footnote
22

C++

7.1.1p4

January 30, 2008 v 1.1

6.2.2 Linkages of identifiers433

There can be no static function declarations within a block, . . .

This wording does not require a diagnostic, but the exact status of a program containing such a usage is not
clear.

A function can be declared as a static member of a class (struct). Such usage is specific to C++ and
cannot occur in C.

429If no prior declaration is visible, or if the prior declaration specifies no linkage, then the identifier has externalprior declaration
not linkage.

C90
The wording in the C90 Standard was changed to its current form by the response to DR #011.

433an identifier declared to be anything other than an object or a function;member
no linkage

C++

3.5p3 A name having namespace scope (3.3.5) has internal linkage if it is the name of

— a data member of an anonymous union.

While the C Standard does not support anonymous unions, some implementations support it as an extension.

3.5p4 A name having namespace scope (3.3.5) has external linkage if it is the name of

— a named class (clause 9), or an unnamed class defined in a typedef declaration in which the class has the
typedef name for linkage purposes (7.1.3); or

— a named enumeration (7.2), or an unnamed enumeration defined in a typedef declaration in which the
enumeration has the typedef name for linkage purposes (7.1.3); or

— an enumerator belonging to an enumeration with external linkage; or

3.5p8 Names not covered by these rules have no linkage. Moreover, except as noted, a name declared in a local scope
(3.3.2) has no linkage.

The following C definition may cause a link-time failure in C++. The names of the enumeration constants
are not externally visible in C, but they are in C++. For instance, the identifiers E1 or E2 may be defined
as externally visible objects or functions in a header that is not included by the source file containing this
declaration.

1 extern enum T {E1, E2} glob;

There are also some C++ constructs that have no meaning in C, or would be constraint violations.

1 void f()
2 {
3 union {int a; char *p; }; /* not an object */
4 // an anonymous union object
5

6 /*
7 * The following all have meaning in C++

v 1.1 January 30, 2008

6.2.3 Name spaces of identifiers 440

8 *
9 a=1;

10 *
11 p="Derek";
12 */
13 }

435 a block scope identifier for an object declared without the storage-class specifier extern. no linkage
block scope

objectC++

3.5p8Moreover, except as noted, a name declared in a local scope (3.3.2) has no linkage. A name with no linkage
(notably, the name of a class or enumeration declared in a local scope (3.3.2)) shall not be used to declare an
entity with linkage.

The following conforming C function is ill-formed in C++.

1 void f(void)
2 {
3 typedef int INT;
4

5 extern INT a; /* Strictly conforming */
6 // Ill-formed
7

8 enum E_TAG {E1, E2};
9

10 extern enum E_TAG b; /* Strictly conforming */
11 // Ill-formed
12 }

436 If, within a translation unit, the same identifier appears with both internal and external linkage, the behavior is linkage
both inter-

nal/externalundefined.

C++

The C++ Standard does not specify that the behavior is undefined and gives an example (3.5p6) showing that
the behavior is defined.

6.2.3 Name spaces of identifiers

438 If more than one declaration of a particular identifier is visible at any point in a translation unit, the syntactic name space

context disambiguates uses that refer to different entities.

C++

This C statement is not always true in C++, where the name lookup rules can involve semantics as well as
syntax; for instance, in some cases the struct can be omitted. 441 tag

name space

439 Thus, there are separate name spaces for various categories of identifiers, as follows:

C++

C++ uses namespace as a keyword (there are 13 syntax rules associated with it and an associated keyword,
using) and as such it is denotes a different concept from the C name space. C++ does contain some of
the name space concepts present in C, and even uses the term namespace to describe them (which can be
somewhat confusing). These are dealt with under the relevant sentences that follow.

January 30, 2008 v 1.1

6.2.3 Name spaces of identifiers441

440— label names (disambiguated by the syntax of the label declaration and use);label
name space

C++

6.1p1 Labels have their own name space and do not interfere with other identifiers.

441— the tags of structures, unions, and enumerations (disambiguated by following any24) of the keywordstag
name space

struct, union, or enum);

C++

Tags in C++ exist in what is sometimes known as one and a half name spaces. Like C they can follow the
keywords struct, union, or enum. Under certain conditions, the C++ Standard allows these keywords to be
omitted.

3.4p1 The name lookup rules apply uniformly to all names (including typedef-names (7.1.3), namespace-names
(7.3) and class-names (9.1)) wherever the grammar allows such names in the context discussed by a particular
rule.

In the following:

1 struct T {int i;};
2 struct S {int i;};
3 int T;
4

5 void f(T p); // Ill-formed, T is an int object
6 /* Constraint violation */
7

8 void g(S p); // Well-formed, C++ allows the struct keyword to be omitted
9 // There is only one S visible at this point

10 /* Constraint violation */

C source code migrated to C++ will contain the struct/union keyword. C++ source code being migrated to
C, which omits the class-key, will cause a diagnostic to be generated.

The C++ rules for tags and typedefs sharing the same identifier are different from C.

3.4.4p2 If the name in the elaborated-type-specifier is a simple identifier, and unless the
elaborated-type-specifier has the following form:

class-key identifier ;

the identifier is looked up according to 3.4.1 but ignoring any non-type names that have been declared. If this
name lookup finds a typedef-name, the elaborated-type-specifier is ill-formed.

The following illustrates how a conforming C and C++ program can generate different results:

1 extern int T;
2

3 int size(void)
4 {
5 struct T {
6 double mem;
7 };
8

9 return sizeof(T); /* sizeof(int) */
10 // sizeof(struct T)
11 }

v 1.1 January 30, 2008

6.2.4 Storage durations of objects 447

The following example illustrates a case where conforming C source is ill-formed C++.

1 struct TAG {int i;};
2 typedef float TAG;
3

4 struct TAG x; /* does not affect the conformance status of the program */
5 // Ill-formed

442 — the members of structures or unions; members
name space

C++

3.3.6p1The following rules describe the scope of names declared in classes.

In C++ members exist in a scope, not a name space.

1 struct {
2 enum E_TAG { E1, E2} /* C identifiers have file scope */
3 // C++ identifiers have class scope
4 m1;
5 } x;
6

7 enum E_TAG y; /* C conforming */
8 // C++ no identifier names E_TAG is visible here

443 each structure or union has a separate name space for its members (disambiguated by the type of the member
namespace

expression used to access the member via the . or -> operator);

C++

3.3.6p2The name of a class member shall only be used as follows:

. . .

— after the . operator applied to an expression of the type of its class (5.2.5) or a class derived from its class,

— after the -> operator applied to a pointer to an object of its class (5.2.5) or a class derived from its class,

1 struct {
2 enum {E1, E2} m;
3 } x;
4

5 x.m = E1; /* does not affect the conformance status of the program */
6 // ill-formed. X::E1 is conforming C++ but a syntax violation in C

444— all other identifiers, called ordinary identifiers (declared in ordinary declarators or as enumeration constants). ordinary
identifiersname space

ordinary
identifiers

C++

The C++ Standard does not define the term ordinary identifiers, or another term similar to it.

January 30, 2008 v 1.1

6.2.4 Storage durations of objects451

44724) There is only one name space for tags even though three are possible.footnote
24

C++

There is no separate name space for tags in C++. They exist in the same name space as object/function/typedef
ordinary identifiers.

6.2.4 Storage durations of objects

448An object has a storage duration that determines its lifetime.storage duration
object

C++

1.8p1 An object has a storage duration (3.7) which influences its lifetime (3.8).

In C++ the initialization and destruction of many objects is handled automatically and in an undefined order
(exceptions can alter the lifetime of an object, compared to how it might appear in the visible source code).
For these reasons an object’s storage duration does not fully determine its lifetime, it only influences it.

449There are three storage durations: static, automatic, and allocated.

C90
The term allocated storage duration did not appear in the C90 Standard. It was added by the response to DR
#138.

C++

3.7p1 The storage duration is determined by the construct used to create the object and is one of the following:

— static storage duration

— automatic storage duration

— dynamic storage duration

The C++ term dynamic storage is commonly used to describe the term allocated storage, which was introduced
in C99.

451The lifetime of an object is the portion of program execution during which storage is guaranteed to be reservedlifetime
of object for it.

C90
The term lifetime was used twice in the C90 Standard, but was not defined by it.

C++

3.8p1 The lifetime of an object is a runtime property of the object. The lifetime of an object of type T begins when:

. . .

The lifetime of an object of type T ends when:

The following implies that storage is allocated for an object during its lifetime:

3.7p1

v 1.1 January 30, 2008

6.2.4 Storage durations of objects 455

Storage duration is the property of an object that defines the minimum potential lifetime of the storage containing
the object.

452 An object exists, has a constant address,25) and retains its last-stored value throughout its lifetime.26)

C++

There is no requirement specified in the C++ Standard for an object to have a constant address. The
requirements that are specified include:

1.9p10Such an object exists and retains its last-stored value during the execution of the block and while the block is
suspended (by a call of a function or receipt of a signal).

3.7.1p1All objects which neither have dynamic storage duration nor are local have static storage duration. The storage
for these objects shall last for the duration of the program (3.6.2, 3.6.3).

453 If an object is referred to outside of its lifetime, the behavior is undefined.

C++

The C++ Standard does not unconditionally specify that the behavior is undefined (the cases associated with
pointers are discussed in the following C sentence):

3.8p3The properties ascribed to objects throughout this International Standard apply for a given object only during
its lifetime. [Note: in particular, before the lifetime of an object starts and after its lifetime ends there are
significant restrictions on the use of the object, as described below, in 12.6.2 and in 12.7. describe the behavior
of objects during the construction and destruction phases.]

454 The value of a pointer becomes indeterminate when the object it points to reaches the end of its lifetime. pointer
indeterminate

C++

The C++ Standard is less restrictive; if does not specify that the value of the pointer becomes indeterminate.

3.8p5Before the lifetime of an object has started but after the storage which the object will occupy has been allocated34)

or, after the lifetime of an object has ended and before the storage which the object occupied is reused or
released, any pointer that refers to the storage location where the object will be or was located may be used but
only in limited ways. Such a pointer refers to allocated storage (3.7.3.2), and using the pointer as if the pointer
were of type void*, is well-defined. Such a pointer may be dereferenced but the resulting lvalue may only be
used in limited ways, as described below. If the object will be or was of a class type with a nontrivial destructor,
and the pointer is used as the operand of a delete-expression, the program has undefined behavior.

Source developed using a C++ translator may contain pointer accesses that will cause undefined behavior
when a program image created by a C implementation is executed.

455 An object whose identifier is declared with external or internal linkage, or with the storage-class specifier static
storage duration

static has static storage duration.

January 30, 2008 v 1.1

6.2.4 Storage durations of objects459

C++

The wording in the C++ Standard is not based on linkage and corresponds in many ways to how C developers
often deduce the storage duration of objects.

3.7.1p1 All objects which neither have dynamic storage duration nor are local have static storage duration.

3.7.1p3 The keyword static can be used to declare a local variable with static storage duration.

457An object whose identifier is declared with no linkage and without the storage-class specifier static hasautomatic
storage duration automatic storage duration.

C++

3.7.2p1 Local objects explicitly declared auto or register or not explicitly declared static or extern have automatic
storage duration.

458For such an object that does not have a variable length array type, its lifetime extends from entry into the blockobject
lifetime from entry
to exit of block with which it is associated until execution of that block ends in any way.

C++

3.7.2p1 The storage for these objects lasts until the block in which they are created exits.

5.2.2p4 The lifetime of a parameter ends when the function in which it is defined returns.

6.7p2 Variables with automatic storage duration declared in the block are destroyed on exit from the block (6.6).

Which is a different way of phrasing 3.7.2p1.

3.8p1 The lifetime of an object of type T begins when:

— storage with the proper alignment and size for type T is obtained, and

. . .

The lifetime of an object of type T ends when:

— the storage which the object occupies is reused or released.

The C++ Standard does not appear to completely specify when the lifetime of objects created on entry into a
block begins.

v 1.1 January 30, 2008

6.2.4 Storage durations of objects 462

459 (Entering an enclosed block or calling a function suspends, but does not end, execution of the current block.)

C++

1.9p10Such an object exists and retains its last-stored value during the execution of the block and while the block is
suspended (by a call of a function or receipt of a signal).

3.7.2p1The storage for these objects lasts until the block in which they are created exits.

460 If the block is entered recursively, a new instance of the object is created each time. block
entered re-

cursivelyC90
The C90 Standard did not point this fact out.

C++

As pointed out elsewhere, the C++ Standard does not explicitly specify when storage for such objects is
458 object

lifetime from
entry to exit of
blockcreated. However, recursive instances of block scope declarations are supported.

5.2.2p9Recursive calls are permitted, except to the function named main (3.6.1).

6.7p2Variables with automatic storage duration (3.7.2) are initialized each time their declaration-statement is
executed. Variables with automatic storage duration declared in the block are destroyed on exit from the block
(6.6).

461 The initial value of the object is indeterminate. object
initial value in-

determinateC++

8.5p9If no initializer is specified for an object, and the object is of (possibly cv-qualified) non-POD class type (or
array thereof), the object shall be default-initialized; if the object is of const-qualified type, the underlying class
type shall have a user-declared default constructor.

Otherwise, if no initializer is specified for an object, the object and its subobjects, if any, have an indeterminate
initial value90); if the object or any of its subobjects are of const-qualified type, the program is ill-formed.

C does not have constructors. So a const-qualified object definition, with a structure or union type, would be
ill-formed in C++.

1 struct T {int i;};
2

3 void f(void)
4 {
5 const struct T loc; /* very suspicious, but conforming */
6 // Ill-formed
7 }

January 30, 2008 v 1.1

6.2.5 Types475

462If an initialization is specified for the object, it is performed each time the declaration is reached in the executioninitialization
performed every
time declaration
reached

of the block;

C90

If an initialization is specified for the value stored in the object, it is performed on each normal entry, but not if
the block is entered by a jump to a labeled statement.

Support for mixing statements and declarations is new in C99. The change in wording is designed to ensure
that the semantics of existing C90 programs is unchanged by this enhanced functionality.

464For such an object that does have a variable length array type, its lifetime extends from the declaration of theVLA
lifetime
starts/ends object until execution of the program leaves the scope of the declaration.27)

C90
Support for variable length arrays is new in C99.

C++

C++ does not support variable length arrays in the C99 sense; however, it does support containers:

23.1p1 Containers are objects that store other objects. They control allocation and deallocation of these objects through
constructors, destructors, insert and erase operations.

The techniques involved, templates, are completely different from any available in C and are not discussed
further here.

46825) The term “constant address” means that two pointers to the object constructed at possibly different timesfootnote
25 will compare equal.

C++

The C++ Standard is silent on this issue.

469The address may be different during two different executions of the same program.

C++

The C++ Standard does not go into this level of detail.

47026) In the case of a volatile object, the last store need not be explicit in the program.footnote
26

C++

7.1.5.1p8 [Note: volatile is a hint to the implementation to avoid aggressive optimization involving the object because
the value of the object might be changed by means undetectable by an implementation. See 1.9 for detailed
semantics. In general, the semantics of volatile are intended to be the same in C++ as they are in C.]

47127) Leaving the innermost block containing the declaration, or jumping to a point in that block or an embeddedfootnote
27 block prior to the declaration, leaves the scope of the declaration.

v 1.1 January 30, 2008

6.2.5 Types 478

C90
Support for VLAs is new in C99.

6.2.5 Types

475 Types are partitioned into object types (types that fully describe objects), function types (types that describe types
partitioned

object types
incomplete types

functions), and incomplete types (types that describe objects but lack information needed to determine their
sizes).

C++

3.9p6Incompletely-defined object types and the void types are incomplete types (3.9.1).

So in C++ the set of incomplete types and the set of object types overlap each other.

3.9p9An object type is a (possibly cv-qualified) type that is not a function type, not a reference type, and not a void
type.

A sentence in the C++ Standard may be word-for-word identical to one appearing in the C Standard and yet
its meaning could be different if the term object type is used. The aim of these C++ subclauses is to point out
such sentences where they occur.

476 An object declared as type _Bool is large enough to store the values 0 and 1. _Bool
large enough

to store 0 and 1C90
Support for the type _Bool is new in C99.

C++

3.9.1p6Values of type bool are either true or false.

4.5p4An rvalue of type bool can be converted to an rvalue of type int, with false becoming zero and true becoming
one.

9.6p3A bool value can successfully be stored in a bit-field of any nonzero size.

477 An object declared as type char is large enough to store any member of the basic execution character set. char
hold any mem-

ber of execution
character setC++

3.9.1p1Objects declared as characters (char) shall be large enough to store any member of the implementation’s basic
character set.

The C++ Standard does not use the term character in the same way as C. 59 character
single-byte

January 30, 2008 v 1.1

6.2.5 Types479

478If a member of the basic execution character set is stored in a char its value is guaranteed to be positivenon-basic char-
acter set
positive if stored
in char object

negative.

C++

The following is really a tautology since a single character literal is defined to have the type char in C++.

3.9.1p1 If a character from this set is stored in a character object, the integral value of that character object is equal to
the value of the single character literal form of that character.

The C++ does place a requirement on the basic execution character set used.

2.2p3 For each basic execution character set, the values of the members shall be non-negative and distinct from one
another.

479If any other character is stored in a char object, the resulting value is implementation-defined but shall be
within the range of values that can be represented in that type.

C90

If other quantities are stored in a char object, the behavior is implementation-defined: the values are treated as
either signed or nonnegative integers.

The implementation-defined behavior referred to in C90 was whether the values are treated as signed or
nonnegative, not the behavior of the store. This C90 wording was needed as part of the chain of deduction
that the plain char type behaved like either the signed or unsigned character types. This requirement was
made explicit in C99. In some cases the C90 behavior for storing other characters in a char object couldchar

range, representa-
tion and behavior

516

have been undefined (implicitly). The effect of the change to the C99 behavior is at most to turn undefined
behavior into implementation-defined behavior. As such, it does not affect conforming programs.

Issues relating to this sentence were addressed in the response to DR #040, question 7.

C++

2.2p3 The values of the members of the execution character sets are implementation-defined, and any additional
members are locale-specific.

The only way of storing a particular character (using a glyph typed into the source code) into a char object isglyph

through a character constant, or a string literal.

2.13.2p1 An ordinary character literal that contains a single c-char has type char, with value equal to the numerical
value of the encoding of the c-char in the execution character set.

2.13.4p1 An ordinary string literal has type “array of n const char” and static storage duration (3.7), where n is the
size of the string as defined below, and is initialized with the given characters.

3.9.1p1

v 1.1 January 30, 2008

6.2.5 Types 491

If a character from this set is stored in a character object, the integral value of that character object is equal to
the value of the single character literal form of that character.

Taken together these requirements are equivalent to those given in the C Standard.

480 There are five standard signed integer types, designated as signed char, short int, int, long int, and standard signed
integer typeslong long int.

C90
Support for the type long long int (and its unsigned partner) is new in C99.

C++

Support for the type long long int (and its unsigned partner) is new in C99 and is not available in C++. (It
was discussed, but not adopted by the C++ Committee.) Many hosted implementations support these types.

482 There may also be implementation-defined extended signed integer types.28) extended signed
integer types

C90
The C90 Standard never explicitly stated this, but it did allow extensions. However, the response to DR #067
specified that the types of size_t and ptrdiff_t must be selected from the list of integer types specified in
the standard. An extended type cannot be used.

C++

The C++ Standard does not explicitly specify an implementation’s ability to add extended signed integer
types, but it does explicitly allow extensions (1.4p8).

483 The standard and extended signed integer types are collectively called signed integer types.29) signed in-
teger types

C90
Explicitly including the extended signed integer types in this definition is new in C99.

487 The type _Bool and the unsigned integer types that correspond to the standard signed integer types are the standard un-
signed integerstandard unsigned integer types.

C90
Support for the type _Bool is new in C99.

C++

In C++ the type bool is classified as an integer type (3.9.1p6). However, it is a type distinct from the signed
and unsigned integer types.

489 The standard and extended unsigned integer types are collectively called unsigned integer types.30) unsigned in-
teger types

C90
Explicitly including the extended signed integer types in the definition is new in C99.

490 28) Implementation-defined keywords shall have the form of an identifier reserved for any use as described in footnote
287.1.3.

C90
The C90 Standard did not go into this level of detail on implementation extensions.

C++

The C++ Standard does not say anything about how an implementation might go about adding additional
keywords. However, it does list a set of names that is always reserved for the implementation (17.4.3.1.2).

January 30, 2008 v 1.1

6.2.5 Types494

49129) Therefore, any statement in this Standard about signed integer types also applies to the extended signedfootnote
29 integer types.

C++

The C++ Standard does not place any requirement on extended integer types that may be provided by an
implementation.

493The standard signed integer types and standard unsigned integer types are collectively called the standardstandard integer
types
extended integer
types

integer types, the extended signed integer types and extended unsigned integer types are collectively called
the extended integer types.

C++

3.9.1p7 Types bool, char, wchar_t, and the signed and unsigned integer types are collectively called integral types.43)

A synonym for integral type is integer type.

Footnote 43 43) Therefore, enumerations (7.2) are not integral; however, enumerations can be promoted to int, unsigned
int, long, or unsigned long, as specified in 4.5.

The issue of enumerations being distinct types, rather than integer types, is discussed elsewhere.enumeration
constant

type

864

494For any two integer types with the same signedness and different integer conversion rank (see 6.3.1.1), theinteger types
relative ranges
rank
relative ranges

range of values of the type with smaller integer conversion rank is a subrange of the values of the other type.

C90
There was no requirement in C90 that the values representable in an unsigned integer type be a subrange of
the values representable in unsigned integer types of greater rank. For instance, a C90 implementation could
make the following choices:

1 SHRT_MAX == 32767 /* 15 bits */
2 USHRT_MAX == 262143 /* 18 bits */
3 INT_MAX == 65535 /* 16 bits */
4 UINT_MAX == 131071 /* 17 bits */

No C90 implementation known to your author fails to meet the stricter C99 requirement.

C++

3.9.1p2 In this list, each type provides at least as much storage as those preceding it in the list.

C++ appears to have a lower-level view than C on integer types, defining them in terms of storage allocated,
rather than the values they can represent. Some deduction is needed to show that the C requirement on values
also holds true for C++:

3.9.1p3 For each of the signed integer types, there exists a corresponding (but different) unsigned integer type:
“unsigned char”, “unsigned short int”, “unsigned int”, and “unsigned long int,” each of which
occupies the same amount of storage and has the same alignment requirements (3.9) as the corresponding
signed integer type40) ;

v 1.1 January 30, 2008

6.2.5 Types 501

They occupy the same storage,

3.9.1p3that is, each signed integer type has the same object representation as its corresponding unsigned integer type.
The range of nonnegative values of a signed integer type is a subrange of the corresponding unsigned integer
type, and the value representation of each corresponding signed/unsigned type shall be the same.

they have a common set of values, and

3.9.1p4Unsigned integers, declared unsigned, shall obey the laws of arithmetic modulo 2n where n is the number of
bits in the value representation of that particular size of integer.41)

more values can be represented as the amount of storage increases.
QED.

497 There are three real floating types, designated as float, double, and long double.32) floating types
three real

C90
What the C90 Standard calls floating types includes complex types in C99. The term real floating types is
new in C99.

500 There are three complex types, designated as float _Complex, double _Complex, and long double _Complex.33) complex types

C90
Support for complex types is new in C99.

C++

In C++ complex is a template class. Three specializations are defined, corresponding to each of the floating-
point types.

26.2p1The header <complex> defines a template class, and numerous functions for representing and manipulating
complex numbers.

26.2p2The effect of instantiating the template complex for any type other than float, double, or long double is
unspecified.

The C++ syntax for declaring objects of type complex is different from C.

1 #ifdef __cplusplus
2

3 #include <complex>
4

5 typedef complex<float> float_complex;
6 typedef complex<double> double_complex;
7 typedef complex<long double> long_double_complex;
8

9 #else
10

11 #include <complex.h>
12

13 typedef float complex float_complex;
14 typedef double complex double_complex;
15 typedef long double complex long_double_complex;
16 #endif

January 30, 2008 v 1.1

6.2.5 Types512

501The real floating and complex types are collectively called the floating types.floating types

C90
What the C90 Standard calls floating types includes complex types in C99.

504For complex types, it is the type given by deleting the keyword _Complex from the type name.

C++

In C++ the complex type is a template class and declarations involving it also include a floating-point type
bracketed between < > tokens. This is the type referred to in the C99 wording.

505Each complex type has the same representation and alignment requirements as an array type containingcomplex type
representation exactly two elements of the corresponding real type;

C++

The C++ Standard defines complex as a template class. There are no requirements on an implementation’s
representation of the underlying values.

506the first element is equal to the real part, and the second element to the imaginary part, of the complexcomplex
component repre-
sentation number.

C++

Clause 26.2.3 lists the first parameter of the complex constructor as the real part and the second parameter
as the imaginary part. But, this does not imply anything about the internal representation used by an
implementation.

507The type char, the signed and unsigned integer types, and the floating types are collectively called the basicbasic types

types.

C++

The C++ Standard uses the term basic types three times, but never defines it:

3.9.1p10 [Note: even if the implementation defines two or more basic types to have the same value representation, they
are nevertheless different types.]

13.5p7 The identities among certain predefined operators applied to basic types (for example, ++a ≡ a+=1) need not
hold for operator functions. Some predefined operators, such as +=, require an operand to be an lvalue when
applied to basic types; this is not required by operator functions.

Footnote 174 174) An implicit exception to this rule are types described as synonyms for basic integral types, such as size_t
(18.1) and streamoff (27.4.1).

51133) A specification for imaginary types is in informative annex G.footnote
33

C++

There is no such annex in the C++ Standard.

v 1.1 January 30, 2008

6.2.5 Types 519

512 34) An implementation may define new keywords that provide alternative ways to designate a basic (or any footnote
34other) type;

C90
Defining new keywords that provide alternative ways of designating basic types was not discussed in the C90
Standard.

C++

The object-oriented constructs supported by C++ removes most of the need for implementations to use
additional keywords to designate basic (or any other) types

515 The three types char, signed char, and unsigned char are collectively called the character types. character types

C++

Clause 3.9.1p1 does not explicitly define the term character types, but the wording implies the same definition
as C.

516 The implementation shall define char to have the same range, representation, and behavior as either signed char
range, representa-
tion and behaviorchar or unsigned char.35)

C90
This sentence did not appear in the C90 Standard. Its intent had to be implied from wording elsewhere in that
standard.

C++

3.9.1p1A char, a signed char, and an unsigned char occupy the same amount of storage and have the same
alignment requirements (3.9); that is, they have the same object representation.

. . .

In any particular implementation, a plain char object can take on either the same values as signed char or
an unsigned char; which one is implementation-defined.

In C++ the type char can cause different behavior than if either of the types signed char or unsigned
char were used. For instance, an overloaded function might be defined to take each of the three distinct
character types. The type of the argument in an invocation will then control which function is invoked. This is
not an issue for C code being translated by a C++ translator, because it will not contain overloaded functions.

518 Each distinct enumeration constitutes a different enumerated type. enumeration
different type

C++

The C++ Standard also contains this sentence (3.9.2p1). But it does not contain the integer compatibility
requirements that C contains. The consequences of this are discussed elsewhere. 1447 enumeration

type compatible
with

519 The type char, the signed and unsigned integer types, and the enumerated types are collectively called integer integer types

types.

C90
In the C90 Standard these types were called either integral types or integer types. DR #067 lead to these two
terms being rationalized to a single term.

January 30, 2008 v 1.1

6.2.5 Types527

C++

3.9.1p7 Types bool, char, wchar_t, and the signed and unsigned integer types are collectively called integral types.43)

A synonym for integral type is integer type.

In C the type _Bool is an unsigned integer type and wchar_t is compatible with some integer type. In C++

they are distinct types (in overload resolution a bool or wchar_t will not match against their implementation-
defined integer type, but against any definition that uses these named types in its parameter list).

In C++ the enumerated types are not integer types; they are a compound type, although they may be
converted to some integer type in some contexts.standard

integer types
493

520The integer and real floating types are collectively called real types.real types

C90
C90 did not include support for complex types and this definition is new in C99.

C++

The C++ Standard follows the C90 Standard in its definition of integer and floating types.

521Integer and floating types are collectively called arithmetic types.arithmetic type

C90
Exactly the same wording appeared in the C90 Standard. Its meaning has changed in C99 because the
introduction of complex types has changed the definition of the term floating types.floating types

three real
497

C++

The wording in 3.9.1p8 is similar (although the C++ complex type is not a basic type).
The meaning is different for the same reason given for C90.

522Each arithmetic type belongs to one type domain: the real type domain comprises the real types, the complextype domain

type domain comprises the complex types.

C90
Support for complex types and the concept of type domain is new in C99.

C++

In C++ complex is a class defined in one of the standard headers. It is treated like any other class. There is no
concept of type domain in the C++ Standard.

523The void type comprises an empty set of values;void
is incomplete
type C90

The void type was introduced by the C90 Committee. It was not defined by the base document.base doc-
ument

525Any number of derived types can be constructed from the object, function, and incomplete types, as follows:derived type

C++

C++ has derived classes, but it does not define derived types as such. The term compound types fills a similar
role:

3.9.2p1 Compound types can be constructed in the following ways:

v 1.1 January 30, 2008

6.2.5 Types 531

527 Array types are characterized by their element type and by the number of elements in the array.

C++

The two uses of the word characterized in the C++ Standard do not apply to array types. There is no other
similar term applied to array types (8.3.4) in the C++ Standard.

528 An array type is said to be derived from its element type, and if its element type is T, the array type is
sometimes called “array of T ”.

C++

This usage of the term derived from is not applied to types in C++; only to classes. The C++ Standard does not
define the term array of T. However, the usage implies this meaning and there is also the reference:

3.9p7(“array of unknown bound of T” and “array of N T”)

529 The construction of an array type from an element type is called “array type derivation”.

C++

This kind of terminology is not defined in the C++ Standard.

530 — A structure type describes a sequentially allocated nonempty set of member objects (and, in certain structure type
sequentially al-
located objectscircumstances, an incomplete array), each of which has an optionally specified name and possibly distinct

type.

C90
Support for a member having an incomplete array type is new in C99.

C++

C++ does not have structure types, it has class types. The keywords struct and class may both be used to
define a class (and plain old data structure and union types). The keyword struct is supported by C++ for
backwards compatibility with C.

9.2p12Nonstatic data members of a (non-union) class declared without an intervening access-specifier are
allocated so that later members have higher addresses within a class object.

C does not support static data members in a structure, or access-specifiers.

3.9.2p1— classes containing a sequence of objects of various types (clause 9), a set of types, enumerations and
functions for manipulating these objects (9.3), and a set of restrictions on the access to these entities (clause 11);

Support for a member having an incomplete array type is new in C99 and not is supported in C++.

7p3In such cases, and except for the declaration of an unnamed bit-field (9.6), the decl-specifier-seq shall
introduce one or more names into the program, or shall redeclare a name introduced by a previous declaration.

The only members that can have their names omitted in C are bit-fields. Thus, taken together the above
covers the requirements specified in the C90 Standard.

531— A union type describes an overlapping nonempty set of member objects, each of which has an optionally union type
overlapping

membersspecified name and possibly distinct type.

January 30, 2008 v 1.1

6.2.5 Types537

C++

9.5p1 Each data member is allocated as if it were the sole member of a struct.

This implies that the members overlap in storage.

3.9.2p1 — unions, which are classes capable of containing objects of different types at different times, 9.5;

7p3 In such cases, and except for the declaration of an unnamed bit-field (9.6), the decl-specifier-seq shall
introduce one or more names into the program, or shall redeclare a name introduced by a previous declaration.

The only members that can have their names omitted in C are bit-fields. Thus, taken together the preceding
covers the requirements specified in the C Standard.

532— A function type describes a function with specified return type.function type

C++

3.9.2p1 — functions, which have parameters of given types and return void or references or objects of a given type,
8.3.5;

The parameters, in C++, need to be part of a function’s type because they may be needed for overload
resolution. This difference is not significant to developers using C because it does not support overloaded
functions.

533A function type is characterized by its return type and the number and types of its parameters.

C++

C++ defines and uses the concept of function signature (1.3.10), which represents information amount
the number and type of a function’s parameters (not its return type). The two occurrences of the word
characterizes in the C++ Standard are not related to functions.

534A function type is said to be derived from its return type, and if its return type is T, the function type isfunction returning
T sometimes called “function returning T ”.

C++

The term function returning T appears in the C++ Standard in several places; however, it is never formally
defined.

535The construction of a function type from a return type is called “function type derivation”.

C++

There is no such definition in the C++ Standard.

53635) CHAR_MIN, defined in <limits.h>, will have one of the values 0 or SCHAR_MIN, and this can be used tofootnote
35 distinguish the two options.

C++

The C++ Standard includes the C90 library by reference. By implication, the preceding is also true in C++.

v 1.1 January 30, 2008

6.2.5 Types 544

537 Irrespective of the choice made, char is a separate type from the other two and is not compatible with either. char
separate type

C++

3.9.1p1Plain char, signed char, and unsigned char are three distinct types.

538 36) Since object types do not include incomplete types, an array of incomplete type cannot be constructed. footnote
36

C++

3.9p6Incompletely-defined object types and the void types are incomplete types (3.9.1).

The C++ Standard makes a distinction between incompletely-defined object types and the void type. 475 object types

3.9p7The declared type of an array object might be an array of incomplete class type and therefore incomplete; if the
class type is completed later on in the translation unit, the array type becomes complete; the array type at those
two points is the same type.

The following deals with the case where the size of an array may be omitted in a declaration:

8.3.4p3When several “array of” specifications are adjacent, a multidimensional array is created; the constant
expressions that specify the bounds of the arrays can be omitted only for the first member of the sequence.

Arrays of incomplete structure and union types are permitted in C++.

1 {
2 struct st;
3 typedef struct st_0 A@lsquare[]4@rsquare[]; /* Undefined behavior */
4 // May be well- or ill-formed
5 typedef struct st_1 B@lsquare[]4@rsquare[]; /* Undefined behavior */
6 // May be well- or ill-formed
7 struct st_0 { /* nothing has changed */
8 int mem; // declaration of A becomes well-formed
9 };

10 } /* nothing has changed */
11 // declaration of B is now known to be ill-formed

539 — A pointer type may be derived from a function type, an object type, or an incomplete type, called the pointer type
referenced typereferenced type.

C++

C++ includes support for what it calls reference types (8.3.2), so it is unlikely to use the term referenced
type in this context (it occurs twice in the standard). There are requirements in the C++ Standard (5.3.1p1)
that apply to pointers to object and function types, but there is no explicit discussion of how they might be
created.

542 The construction of a pointer type from a referenced type is called “pointer type derivation”.

January 30, 2008 v 1.1

6.2.5 Types550

C++

The C++ Standard does not define this term, although the term derived-declarator-type-list is defined
(8.3.1p1).

544Arithmetic types and pointer types are collectively called scalar types.scalar types

C++

3.9p10 Arithmetic types (3.9.1), enumeration types, pointer types, and pointer to member types (3.9.2), and
cv-qualified versions of these types (3.9.3) are collectively called scalar types.

While C++ includes type qualifier in the definition of scalar types, this difference in terminology has no
impact on the interpretation of constructs common to both languages.

545Array and structure types are collectively called aggregate types.37)aggregate type

C++

8.5.1p1 An aggregate is an array or a class (clause 9) with no user-declared constructors (12.1), no private or protected
non-static data members (clause 11), no base classes (clause 10), and no virtual functions (10.3).

Class types in C++ include union types. The C definition of aggregate does not include union types. The
difference is not important because everywhere that the C++ Standard uses the term aggregate the C Standard
specifies aggregate and union types.

The list of exclusions covers constructs that are in C++, but not C. (It does not include static data members,
but they do not occur in C and are ignored during initialization in C++.) There is one place in the C++ Standard
(3.10p15) where the wording suggests that the C definition of aggregate is intended.

547It is completed, for an identifier of that type, by specifying the size in a later declaration (with internal orarray
type completed by external linkage).

C++

3.9p7 The declared type of an array object might be an array of unknown size and therefore be incomplete at one point
in a translation unit and complete later on;

Which does not tell us how it got completed. Later on in the paragraph we are given the example:

3.9p7 extern int arr@lsquare[]@rsquare[]; // the type of arr is incomplete

int arr@lsquare[]10@rsquare[]; // now the type of arr is complete

which suggests that an array can be completed, in a later declaration, by specifying that it has 10 elements. :-)

550It is completed, for all declarations of that type, by declaring the same structure or union tag with its definingincomplete type
completed by content later in the same scope.

C++

3.9p7

v 1.1 January 30, 2008

6.2.5 Types 555

A class type (such as “class X”) might be incomplete at one point in a translation unit and complete later on;

An example later in the same paragraph says:

3.9p7
class X; // X is an incomplete type

struct X { int i; }; // now X is a complete type

The following specifies when a class type is completed; however, it does not list any scope requirements.

9.2p2A class is considered a completely-defined object type (3.9) (or complete type) at the closing } of the
class-specifier.

In practice the likelihood of C++ differing from C, in scope requirements on the completion of types, is small
and no difference is listed here.

551 Array, function, and pointer types are collectively called derived declarator types. derived declara-
tor types

C++

There is no equivalent term defined in the C++ Standard.

552 A declarator type derivation from a type T is the construction of a derived declarator type from T by the
application of an array-type, a function-type, or a pointer-type derivation to T.

C++

There is no equivalent definition in the C++ Standard, although the description of compound types (3.9.2)
provides a superset of this definition.

553 A type is characterized by its type category, which is either the outermost derivation of a derived type (as type category

noted above in the construction of derived types), or the type itself if the type consists of no derived types.

C++

The term outermost level occurs in a few places in the C++ Standard, but the term type category is not defined.

554 Any type so far mentioned is an unqualified type. unqualified type

C++

In C++ it is possible for the term type to mean a qualified or an unqualified type (3.9.3).

555 Each unqualified type has several qualified versions of its type,38) corresponding to the combinations of one, qualified type
versions oftwo, or all three of the const, volatile, and restrict qualifiers.

C90
The noalias qualifier was introduced in later drafts of what was to become C90. However, it was controver-
sial and there was insufficient time available to the Committee to resolve the issues involved. The noalias
qualifier was removed from the document, prior to final publication. The restrict qualifier has the same
objectives as noalias, but specifies the details in a different way.

Support for the restrict qualifier is new in C99.

C++

3.9.3p1

January 30, 2008 v 1.1

6.2.6.1 General570

Each type which is a cv-unqualified complete or incomplete object type or is void (3.9) has three correspond-
ing cv-qualified versions of its type: a const-qualified version, a volatile-qualified version, and a
const-volatile-qualified version.

The restrict qualifier was added to C99 while the C++ Standard was being finalized. Support for this
keyword is not available in C++.

560All pointers to structure types shall have the same representation and alignment requirements as each other.alignment
pointer to struc-
tures
representation
pointer to struc-
tures

C90
This requirement was not explicitly specified in the C90 Standard.

C++

The C++ Standard follows the C90 Standard in not explicitly stating any such requirement.

561All pointers to union types shall have the same representation and alignment requirements as each other.alignment
pointer to unions
representation
pointer to unions

C90
This requirement was not explicitly specified in the C90 Standard.

C++

The C++ Standard follows the C90 Standard in not explicitly stating any such requirement.

562Pointers to other types need not have the same representation or alignment requirements.alignment
pointers

C++

3.9.2p3 The value representation of pointer types is implementation-defined.

56337) Note that aggregate type does not include union type because an object with union type can only containfootnote
37 one member at a time.

C++

The C++ Standard does include union types within the definition of aggregate types, 8.5.1p1. So, this rationale
was not thought applicable by the C++ Committee.

6.2.6 Representations of types
6.2.6.1 General

569The representations of all types are unspecified except as stated in this subclause.types
representation

C90
This subclause is new in C99, although some of the specifications it contains were also in the C90 Standard.

C++

3.9p1 [Note: 3.9 and the subclauses thereof impose requirements on implementations regarding the representation of
types.

These C++ subclauses go into some of the details specified in this C subclause.

v 1.1 January 30, 2008

6.2.6.1 General 572

570 Except for bit-fields, objects are composed of contiguous sequences of one or more bytes, the number, order, object
contiguous se-

quence of bytesand encoding of which are either explicitly specified or implementation-defined.

C++

1.8p5An object of POD4) type (3.9) shall occupy contiguous bytes of storage.

The acronym POD stands for Plain Old Data and is intended as a reference to the simple, C model, or laying
out objects. A POD type is any scalar type and some, C compatible, structure and union types.

In general the C++ Standard says nothing about the number, order, or encoding of the bytes making up
what C calls an object, although C++ does specify the same requirements as C on the layout of members of a
structure or union type that is considered to be a POD.

571 Values stored in unsigned bit-fields and objects of type unsigned char shall be represented using a pure unsigned char
pure binarybinary notation.40)

C90
This requirement was not explicitly specified in the C90 Standard.

C++

3.9.1p1For unsigned character types, all possible bit patterns of the value representation represent numbers. These
requirements do not hold for other types.

The C++ Standard does not include unsigned bit-fields in the above requirement, as C does. However, it is
likely that implementations will follow the C requirement.

572 Values stored in non-bit-field objects of any other object type consist of n × CHAR_BIT bits, where n is the size
of an object of that type, in bytes.

C90
This level of detail was not specified in the C90 Standard (and neither were any of the other details in this
paragraph).

C++

3.9p4The object representation of an object of type T is the sequence of N unsigned char objects taken up by the
object of type T, where N equals sizeof(T).

That describes the object representation. But what about the value representation?

3.9p4The value representation of an object is the set of bits that hold the value of type T. For POD types, the value
representation is a set of bits in the object representation that determines a value, which is one discrete element
of an implementation-defined set of values.37)

This does not tie things down as tightly as the C wording. In fact later on we have:

3.9.1p1

January 30, 2008 v 1.1

6.2.6.1 General578

For character types, all bits of the object representation participate in the value representation. For unsigned
character types, all possible bit patterns of the value representation represent numbers. These requirements do
not hold for other types.

QED.

573The value may be copied into an object of type unsigned char [n] (e.g., by memcpy);value
copied using
unsigned char C90

This observation was first made by the response to DR #069.

575Values stored in bit-fields consist of m bits, where m is the size specified for the bit-field.bit-field
value is m bits

C++

9.6p1 The constant-expression may be larger than the number of bits in the object representation (3.9) of the
bit-field’s type; in such cases the extra bits are used as padding bits and do not participate in the value
representation (3.9) of the bit-field.

This specifies the object representation of bit-fields. The C++ Standard does not say anything about the
representation of values stored in bit-fields.
C++ allows bit-fields to contain padding bits. When porting software to a C++ translator, where the type int
has a smaller width (e.g., 16 bits), there is the possibility that some of the bits will be treated as padding bits
on the new host. In:

1 struct T {
2 unsigned int m1:18;
3 };

the member m1 will have 18 value bits when the type unsigned int has a precision of 32, but only 16 value
bits when unsigned int has a precision of 16.

577Two values (other than NaNs) with the same object representation compare equal, but values that compare
equal may have different object representations.

C++

3.9p3 For any POD type T, if two pointers to T point to distinct T objects obj1 and obj2, if the value of obj1 is copied
into obj2, using the memcpy library function, obj2 shall subsequently hold the same value as obj1.

This handles the first case above. The C++ Standard says nothing about the second value compare case.

578Certain object representations need not represent a value of the object type.

C90
This observation was not explicitly made in the C90 Standard.

C++

3.9p4

v 1.1 January 30, 2008

6.2.6.1 General 585

The value representation of an object is the set of bits that hold the value of type T. For POD types, the value
representation is a set of bits in the object representation that determines a value, which is one discrete element
of an implementation-defined set of values.37)

Footnote 3737) The intent is that the memory model of C++ is compatible with that of ISO/IEC 9899 Programming Languages
C.

By implication this is saying what C says. It also explicitly specifies that these representation issues are
implementation-defined.

579 If the stored value of an object has such a representation and is read by an lvalue expression that does not trap repre-
sentation

reading is un-
defined behavior

have character type, the behavior is undefined.

C90
The C90 Standard specified that reading an uninitialized object was undefined behavior. But, it did not
specify undefined behaviors for any other representations.

C++

The C++ Standard does not explicitly specify any such behavior.

580 If such a representation is produced by a side effect that modifies all or any part of the object by an lvalue
expression that does not have character type, the behavior is undefined.41)

C90
The C90 Standard did not explicitly specify this behavior.

C++

The C++ Standard does not explicitly discuss this issue.

581 Such a representation is called a trap representation. trap repre-
sentation

C90
This term was not defined in the C90 Standard.

C++

Trap representations in C++ only apply to floating-point types.

582 40) A positional representation for integers that uses the binary digits 0 and 1, in which the values represented footnote
40by successive bits are additive, begin with 1, and are multiplied by successive integral powers of 2, except

perhaps the bit with the highest position.

C90
Integer type representation issues were discussed in DR #069.

584 A byte contains CHAR_BIT bits, and the values of type unsigned char range from 0 to 2CHAR_BIT − 1. unsigned char
value range

C++

The C++ Standard includes the C library by reference, so a definition of CHAR_BIT will be available in C++.

3.9.1p4Unsigned integers, declared unsigned, shall obey the laws of arithmetic modulo 2n where n is the number of
bits in the value representation of that particular size of integer.41)

From which it can be deduced that the C requirement holds true in C++.

January 30, 2008 v 1.1

6.2.6.2 Integer types591

58541) Thus, an automatic variable can be initialized to a trap representation without causing undefined behavior,footnote
41 but the value of the variable cannot be used until a proper value is stored in it.

C90
The C90 Standard did not discuss trap representation and this possibility was not discussed.

C++

The C++ Standard does not make this observation about possible implementation behavior.

586When a value is stored in an object of structure or union type, including in a member object, the bytes of thevalue
stored in struc-
ture
value
stored in union

object representation that correspond to any padding bytes take unspecified values.42)

C90
The sentences:

With one exception, if a member of a union object is accessed after a value has been stored in a different member
of the object, the behavior is implementation-defined 41).

41) The “byte orders” for scalar types are invisible to isolated programs that do not indulge in type punning
(for example, by assigning to one member of a union and inspecting the storage by accessing another member
that is an appropriately sized array of character type), but must be accounted for when conforming to externally-
imposed storage layouts.

appeared in C90, but does not appear in C99.
If a member of a union object is accessed after a value has been stored in a different member of the object,
the behavior is implementation-defined in C90 and unspecified in C99.

C++

This specification was added in C99 and is not explicitly specified in the C++ Standard.

587The values of padding bytes shall not affect whether the value of such an object is a trap representation. The
value of a structure or union object is never a trap representation, even though the value of a member of a
structure or union object may be a trap representation.

C90
This requirement is new in C99.

C++

This wording was added in C99 and is not explicitly specified in the C++ Standard.

590Where an operator is applied to a value that has more than one object representation, which object represen-
tation is used shall not affect the value of the result.43)

C90
This requirement was not explicitly specified in the C90 Standard.

C++

This requirement was added in C99 and is not explicitly specified in the C++ Standard (although the last
sentence of 3.9p4 might be interpreted to imply this behavior).

591Where a value is stored in an object using a type that has more than one object representation for that value,object rep-
resentation
more than one it is unspecified which representation is used, but a trap representation shall not be generated.

v 1.1 January 30, 2008

6.2.6.2 Integer types 600

C90
The C90 Standard was silent on the topic of multiple representations of object types.

C++

This requirement is not explicitly specified in the C++ Standard.

6.2.6.2 Integer types

593 For unsigned integer types other than unsigned char, the bits of the object representation shall be divided unsigned in-
teger types
object rep-

resentation

into two groups: value bits and padding bits (there need not be any of the latter).

C90
Explicit calling out of a division of the bits in the representation of an unsigned integer representation is new
in C99.

C++

Like C90 the grouping of bits into value and padding bits is not explicitly specified in the C++ Standard
(3.9p2, also requires that the type unsigned char not have any padding bits).

594 If there are N value bits, each bit shall represent a different power of 2 between 1 and 2N-1, so that objects of
that type shall be capable of representing values from 0 to 2N-1 using a pure binary representation;

C90
These properties of unsigned integer types were not explicitly specified in the C90 Standard.

596 The values of any padding bits are unspecified.44) unsigned integer
padding bit values

C90
Padding bits were not discussed in the C90 Standard, although they existed in some C90 implementations.

C++

This specification of behavior was added in C99 and is not explicitly specified in the C++ Standard.

599 there shall be exactly one sign bit. sign
one bit

C90
This requirement was not explicitly specified in the C90 Standard.

C++

3.9.1p7[Example: this International Standard permits 2’s complement, 1’s complement and signed magnitude represen-
tations for integral types.]

These three representations all have exactly one sign bit.

600 Each bit that is a value bit shall have the same value as the same bit in the object representation of the value bits
signed/unsignedcorresponding unsigned type (if there are M value bits in the signed type and N in the unsigned type, then M

≤ N).

C90
This requirement is new in C99.

C++

3.9.1p3

January 30, 2008 v 1.1

6.2.6.2 Integer types608

The range of nonnegative values of a signed integer type is a subrange of the corresponding unsigned integer
type, and the value representation of each corresponding signed/unsigned type shall be the same.

If the value representation is the same, the value bits will match up. What about the requirement on the
number of bits?

3.9.1p3 . . . each of which occupies the same amount of storage and has the same alignment requirements (3.9) as the
corresponding signed integer type40); that is, each signed integer type has the same object representation as its
corresponding unsigned integer type.

Combining these requirements with the representations listed in 3.9.1p7, we can deduce that C++ has the
same restrictions on the relative number of value bits in signed and unsigned types.

60142)Thus, for example, structure assignment may be implemented element-at-a-time or via memcpy. need notfootnote
42 copy any padding bits.

C90
The C90 Standard did not explicitly specify that padding bits need not be copied.

C++

Footnote 36 36) By using, for example, the library functions (17.4.1.2) memcpy or memmove.

The C++ Standard does not discuss details of structure object assignment for those constructs that are
supported by C. However, it does discuss this issue (12.8p8) for copy constructors, a C++ construct.

60243) It is possible for objects x and y with the same effective type T to have the same value when they arefootnote
43 accessed as objects of type T, but to have different values in other contexts.

C90
This observation was not pointed out in the C90 Standard.

C++

The C++ Standard does not make a general observation on this issue. However, it does suggest that such
behavior might occur as a result of the reinterpret_cast operator (5.2.10p3).

60644) Some combinations of padding bits might generate trap representations, for example, if one padding bit isfootnote
44 a parity bit.

C90
This footnote is new in C99.

C++

This wording was added in C99 and is not explicitly specified in the C++ Standard. Trap representations in
C++ only apply to floating-point types.

607Regardless, no arithmetic operation on valid values can generate a trap representation other than as part ofarithmetic
operation
exceptional condi-
tion

an exceptional condition such as an overflow, and this cannot occur with unsigned types.

C++

This discussion on trap representations was added in C99 and is not explicitly specified in the C++ Standard.

v 1.1 January 30, 2008

6.2.6.2 Integer types 615

608 All other combinations of padding bits are alternative object representations of the value specified by the value
bits.

C++

This discussion of padding bits was added in C99 and is not explicitly specified in the C++ Standard.

609 If the sign bit is zero, it shall not affect the resulting value.

C90
This requirement was not explicitly specified in the C90 Standard.

C++

3.9.1p7[Example: this International Standard permits 2’s complement, 1’s complement and signed magnitude represen-
tations for integral types.]

In these three representations a sign bit of zero does not affect the resulting value.

610 If the sign bit is one, the value shall be modified in one of the following ways: sign bit
representation

C90
This requirement was not explicitly specified in the C90 Standard.

611— the corresponding value with sign bit 0 is negated (sign and magnitude); sign and
magnitude

C++

Support for sign and magnitude is called out in 3.9.1p7, but the representational issues are not discussed.

612 — the sign bit has the value -(2N) (two’s complement); two’s complement

C++

Support for two’s complement is called out in 3.9.1p7, but the representational issues are not discussed.

613 — the sign bit has the value −(2N − 1) (one’s complement). one’s complement

C++

Support for one’s complement is called out in 3.9.1p7, but the representational issues are not discussed.

614 Which of these applies is implementation-defined, as is whether the value with sign bit 1 and all value bits
zero (for the first two), or with sign bit and all value bits 1 (for one’s complement), is a trap representation or a
normal value.

C90
The choice of representation for signed integer types was not specified as implementation-defined in C90
(although annex G.3.5 claims otherwise). The C90 Standard said nothing about possible trap representations.

C++

The following suggests that the behavior is unspecified.

3.9.1p7The representations of integral types shall define values by use of a pure binary numeration system44). [Example:
this International Standard permits 2’s complement, 1’s complement and signed magnitude representations for
integral types.]

Trap representations in C++ only apply to floating-point types.

January 30, 2008 v 1.1

6.2.6.2 Integer types624

615In the case of sign and magnitude and one’s complement, if this representation is a normal value it is called anegative zero

negative zero.

C90
The C90 Standard supported hosts that included a representation for negative zero, however, the term negative
zero was not explicitly defined.

C++

The term negative zero does not appear in the C++ Standard.

616If the implementation supports negative zeros, they shall be generated only by:negative zero
only generated by

C90
The properties of negative zeros were not explicitly discussed in the C90 Standard.

C++

This requirement was added in C99; negative zeros are not explicitly discussed in the C++ Standard.

620It is unspecified whether these cases actually generate a negative zero or a normal zero, and whether anegative zero
storing negative zero becomes a normal zero when stored in an object.

C90
This unspecified behavior was not called out in the C90 Standard, which did not discuss negative integer
zeros.

C++

Negative zero is not discussed in the C++ Standard.

621If the implementation does not support negative zeros, the behavior of the &, |, ^, ~, <<, and >> operators with
arguments that would produce such a value is undefined.

C90
This undefined behavior was not explicitly specified in the C90 Standard.

C++

This specification was added in C99 and is not explicitly specified in the C++ Standard.

623A valid (non-trap) object representation of a signed integer type where the sign bit is zero is a valid objectobject rep-
resentation
same padding
signed/unsigned

representation of the corresponding unsigned type, and shall represent the same value.

C90
There was no such requirement on the object representation in C90, although this did contain the C99
requirement on the value representation.

positive
signed in-

teger type
subrange of

equivalent
unsigned type C++

3.9.1p3 . . . ; that is, each signed integer type has the same object representation as its corresponding unsigned integer
type. The range of nonnegative values of a signed integer type is a subrange of the corresponding unsigned
integer type, and the value representation of each corresponding signed/unsigned type shall be the same.

624For any integer type, the object representation where all the bits are zero shall be a representation of the
value zero in that type.

v 1.1 January 30, 2008

6.2.7 Compatible type and composite type 633

C90
The C90 Standard did not specify this requirement.

625 The precision of an integer type is the number of bits it uses to represent values, excluding any sign and precision
integer typepadding bits.

C90
The definition of this term is new in C99.

C++

The term precision was added in C99 and is only defined in C++ for floating-point types.

626 The width of an integer type is the same but including any sign bit; width
integer type

C90
The definition of this term is new in C99.

C++

The term width was added in C99 and is not defined in the C++ Standard.

6.2.7 Compatible type and composite type

631 Two types have compatible type if their types are the same. compatible type
if

same typeC++

The C++ Standard does not define the term compatible type. It either uses the term same type or different type.
The terms layout-compatible and reference-compatible are defined by the C++ Standard. The specification of
layout-compatible structure (9.2p14) and layout compatible union (9.2p15) is based on the same set of rules
as the C cross translation unit compatibility rules. The purpose of layout compatibility deals with linking
objects written in other languages; C is explicitly called out as one such language.

633 Moreover, two structure, union, or enumerated types declared in separate translation units are compatible if compatible
separate trans-

lation unitstheir tags and members satisfy the following requirements:

C90

Moreover, two structure, union, or enumerated types declared in separate translation units are compatible if
they have the same number of members, the same member names, and compatible member types;

There were no requirements specified for tag names in C90. Since virtually no implementation performs this
check, it is unlikely that any programs will fail to link when using a C99 implementation.

C++

The following paragraph applies when both translation units are written in C++.

3.2p5There can be more than one definition of a class type (clause 9), enumeration type (7.2), inline function with
external linkage (7.1.2), class template (clause 14), non-static function template (14.5.5), static data member of
a class template (14.5.1.3), member function template (14.5.1.1), or template specialization for which some
template parameters are not specified (14.7, 14.5.4) in a program provided that each definition appears in a
different translation unit, and provided the definitions satisfy the following requirements.

There is a specific set of rules for dealing with the case of one or more translation units being written in
another language and others being written in C++:

7.5p2

January 30, 2008 v 1.1

6.2.7 Compatible type and composite type634

Linkage (3.5) between C++ and non-C++ code fragments can be achieved using a linkage-specification:

. . .

[Note: . . . The semantics of a language linkage other than C++ or C are implementation-defined.]

which appears to suggest that it is possible to make use of defined behavior when building a program image
from components translated using both C++ and C translators.

The C++ Standard also requires that:

7.1.5.3p3 The class-key or enum keyword present in the elaborated-type-specifier shall agree in kind with the
declaration to which the name in the elaborated-type-specifier refers.

634If one is declared with a tag, the other shall be declared with the same tag.tag
declared with
same C90

This requirement is not specified in the C90 Standard.
Structures declared using different tags are now considered to be different types.

xfile.c
1 #include <stdio.h>
2

3 extern int WG14_N685(struct tag1 *, struct tag1 *);
4

5 struct tag1 {
6 int m1,
7 m2;
8 } st1;
9

10 void f(void)
11 {
12 if (WG14_N685(&st1, &st1))
13 {
14 printf("optimized\n");
15 }
16 else
17 {
18 printf("unoptimized\n");
19 }
20 }

yfile.c
1 struct tag2 {
2 int m1,
3 m2;
4 };
5 struct tag3 {
6 int m1,
7 m2;
8 };
9

10 int WG14_N685(struct tag2 *pst1,
11 struct tag3 *pst2)
12 {
13 pst1->m1 = 2;
14 pst2->m1 = 0; /* alias? */
15

16 return pst1->m1;
17 }

v 1.1 January 30, 2008

6.2.7 Compatible type and composite type 637

An optimizing translator might produce optimized as the output of the program, while the same translator
with optimization turned off might produce unoptimized as the output. This is because translation unit
y.c defines func with two parameters each as pointers to different structures, and translation unit x.c calls
WG14_N685func but passes the address of the same structure for each argument.

636 there shall be a one-to-one correspondence between their members such that each pair of corresponding
members are declared with compatible types, and such that if one member of a corresponding pair is declared
with a name, the other member is declared with the same name.

C90

. . . if they have the same number of members, the same member names, and compatible member types;

The C90 Standard is lax in that it does not specify any correspondence for members defined in different
structure types, their names and associated types.

C++

3.2p5— each definition of D shall consist of the same sequence of tokens; and

— in each definition of D, corresponding names, looked up according to 3.4, shall refer to an entity defined
within the definition of D, or shall refer to the same entity, after overload resolution (13.3) and after matching
of partial template specialization (14.8.3), except that a name can refer to a const object with internal or no
linkage if the object has the same integral or enumeration type in all definitions of D, and the object is initialized
with a constant expression (5.19), and the value (but not the address) of the object is used, and the object has
the same value in all definitions of D; and

The C Standard specifies an effect, compatible types. The C++ Standard specifies an algorithm, the same
sequence of tokens (not preprocessing tokens), which has several effects. The following source files are
strictly conforming C, but undefined behavior in C++.

file_1.c
1 extern struct {
2 short s_mem1;
3 } glob;

file_2.c
1 extern struct {
2 short int s_mem1;
3 } glob;

9.2p14Two POD-struct (clause 9) types are layout-compatible if they have the same number of members, and corre-
sponding members (in order) have layout-compatible types (3.9).

9.2p15Two POD-union (clause 9) types are layout-compatible if they have the same number of members, and corre-
sponding members (in any order) have layout-compatible types (3.9).

Layout compatibility plays a role in interfacing C++ programs to other languages and involves types only.
The names of members plays no part.

January 30, 2008 v 1.1

6.2.7 Compatible type and composite type640

637For two structures, corresponding members shall be declared in the same order.members
corresponding

C90

. . . for two structures, the members shall be in the same order;

The C90 Standard is lax in that it does not specify how a correspondence is formed between members defined
in different structure definitions. The following two source files could have been part of a strictly conforming
program in C90. In C99 the behavior is undefined and, if the output depends on glob, the program will not
be strictly conforming.

file_1.c
1 extern struct {
2 short s_mem1;
3 int i_mem2;
4 } glob;

file_2.c
1 extern struct {
2 int i_mem2;
3 short s_mem1;
4 } glob;

While the C90 Standard did not require an ordering of corresponding member names, developer expectations
do. A diagnostic, issued by a C99 translator, for a declaration of the same object as a structure type with
differing member orders, is likely to be welcomed by developers.

639For two enumerations, corresponding members shall have the same values.

C90

. . . for two enumerations, the members shall have the same values.

The C90 Standard is lax in not explicitly specifying that the members with the same names have the same
values.

C++

3.2p5 — each definition of D shall consist of the same sequence of tokens; and

The C++ requirement is stricter than C. In the following two translation units, the object e_glob are not
considered compatible in C++:

file_1.c
1 extern enum {A = 1, B = 2} e_glob;

file_2.c
1 extern enum {B= 2, A = 1} e_glob;

v 1.1 January 30, 2008

6.2.7 Compatible type and composite type 644

640 All declarations that refer to the same object or function shall have compatible type; same object
have com-

patible types
same function

have com-
patible types

C++

3.2p5— each definition of D shall consist of the same sequence of tokens; and

— in each definition of D, corresponding names, looked up according to 3.4, shall refer to an entity defined
within the definition of D, or shall refer to the same entity, after overload resolution (13.3) and after matching
of partial template specialization (14.8.3), except that a name can refer to a const object with internal or no
linkage if the object has the same integral or enumeration type in all definitions of D, and the object is initialized
with a constant expression (5.19), and the value (but not the address) of the object is used, and the object has
the same value in all definitions of D; and

3.5p10After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types specified
by all declarations referring to a given object or function shall be identical, except that declarations for an
array object can specify array types that differ by the presence or absence of a major array bound (8.3.4).

The C++ Standard is much stricter in requiring that the types be identical. The int/enum example given above
would not be considered compatible in C++. If translated and linked with each other the following source
files are strictly conforming C, but undefined behavior in C++.

file_1.c
1 extern short es;

file_2.c
1 extern short int es = 2;

641 otherwise, the behavior is undefined.

C++

3.5p10A violation of this rule on type identity does not require a diagnostic.

The C++ Standard bows to the practical difficulties associated with requiring implementations to issue a
diagnostic for this violation.

642 A composite type can be constructed from two types that are compatible; composite type

C++

One of the two types involved in creating composite types in C is not supported in C++ (function types that
don’t include prototypes) and the C++ specification for the other type (arrays) is completely different from C. 644 array

composite type

Because C++ supports operator overloading type qualification of pointed-to types is a more pervasive issue
than in C (where it only has to be handled for the conditional operator). The C++ Standard defines the concept

conditional
operator
pointer to qualified
typesof a composite pointer type (5.9p2). This specifies how a result type is constructed from pointers to qualified

types, and the null pointer constant and other pointer types.

644— If one type is an array of known constant size, the composite type is an array of that size; array
composite type

January 30, 2008 v 1.1

6.2.7 Compatible type and composite type647

C90

If one type is an array of known size, the composite type is an array of that size;

Support for arrays declared using a nonconstant size is new in C99.

C++

An incomplete array type can be completed. But the completed type is not called the composite type, and is
regarded as a different type:

3.9p7 . . . ; the array types at those two points (“array of unknown bound of T” and “array of N T”) are different types.

The C++ Standard recognizes the practice of an object being declared with both complete and incomplete
array types with the following exception:

3.5p10 After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types specified
by all declarations referring to a given object or function shall be identical, except that declarations for an
array object can specify array types that differ by the presence or absence of a major array bound (8.3.4).

645otherwise, if one type is a variable length array, the composite type is that type.

C90
Support for VLA types is new in C99.

C++

Variable length array types are new in C99. The C++ library defined container classes (23), but this is a very
different implementation concept.

646— If only one type is a function type with a parameter type list (a function prototype), the composite type is afunction
composite type function prototype with the parameter type list.

C++

All C++ functions must be declared using prototypes. A program that contains a function declaration that
does not include parameter information is assumed to take no parameters.

1 extern void f();
2

3 void g(void)
4 {
5 f(); // Refers to a function returning int and having no parameters
6 /* Non-prototype function referenced */
7 }
8

9 void f(int p) /* Composite type formed, call in g linked to here */
10 // A different function from int f()
11 // Call in g does not refer to this function
12 { /* ... */ }

647— If both types are function types with parameter type lists, the type of each parameter in the composite
parameter type list is the composite type of the corresponding parameters.

v 1.1 January 30, 2008

6.2.7 Compatible type and composite type 649

C++

C++ allows functions to be overloaded based on their parameter types. An implementation must not form a
composite type, even when the types might be viewed by a C programmer as having the same effect:

1 /*
2 * A common, sloppy, coding practice. Don’t declare
3 * the prototype to take enums, just use int.
4 */
5 extern void f(int);
6

7 enum ET {E1, E2, E3};
8

9 void f(enum ET p) /* composite type formed, call in g linked to here */
10 // A different function from void f(int)
11 // Call in g does not refer here
12 { /* ... */ }
13

14 void g(void)
15 {
16 f(E1); // Refers to a function void (int)
17 /* Refers to definition of f above */
18 }

648 These rules apply recursively to the types from which the two types are derived.

C++

The C++ Standard has no such rules to apply recursively.

649 For an identifier with internal or external linkage declared in a scope in which a prior declaration of that prior declara-
tion visibleidentifier is visible,47) if the prior declaration specifies internal or external linkage, the type of the identifier at

the later declaration becomes the composite type.

C90
The wording in the C90 Standard:

For an identifier with external or internal linkage declared in the same scope as another declaration for that
identifier, the type of the identifier becomes the composite type.

was changed to its current form by the response to DR #011, question 1.

C++

3.5p9Two names that are the same (clause 3) and that are declared in different scopes shall denote the same object,
reference, function, type, enumerator, template or namespace if

— both names have external linkage or else both names have internal linkage and are declared in the same
translation unit; and

— both names refer to members of the same namespace or to members, not by inheritance, of the same class;
and

— when both names denote functions, the function types are identical for purposes of overloading; and

This paragraph applies to names declared in different scopes; for instance, file scope and block scope
externals.

13p1

January 30, 2008 v 1.1

6.3 Conversions654

When two or more different declarations are specified for a single name in the same scope, that name is said to be
overloaded. By extension, two declarations in the same scope that declare the same name but with different types
are called overloaded declarations. Only function declarations can be overloaded; object and type declarations
cannot be overloaded.

The following C++ requirement is much stricter than C. The types must be the same, which removes the need
to create a composite type.

3.5p10 After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types specified
by all declarations referring to a given object or function shall be identical, except that declarations for an
array object can specify array types that differ by the presence or absence of a major array bound (8.3.4). A
violation of this rule on type identity does not require a diagnostic.

The only composite type in C++ are composite pointer types (5.9p2). These are only used in relational
operators (5.9p2), equality operators (5.10p2, where the term common type is used), and the conditional
operator (5.16p6). C++ composite pointer types apply to the null pointer and possibly qualified pointers to
void.
If declarations of the same function do not have the same type, the C++ link-time behavior will be undefined.
Each function declaration involving different adjusted types will be regarded as referring to a different
function.

1 extern void f(const int);
2 extern void f(int); /* Conforming C, composite type formed */
3 // A second (and different) overloaded declaration

65046) Two types need not be identical to be compatible.footnote
46

C++

The term compatible is used in the C++ Standard for layout-compatible and reference-compatible. Layout
compatibility is aimed at cross-language sharing of data structures and involves types only. The names of
structure and union members, or tags, need not be identical. C++ reference types are not available in C.

652EXAMPLE Given the following two file scope declarations:

int f(int (*)(), double (*)[3]);
int f(int (*)(char *), double (*)[]);

The resulting composite type for the function is:

int f(int (*)(char *), double (*)[3]);

C++

The C++ language supports the overloading of functions. They are overloaded by having more than one
declaration of a function with the same name and return type, but different parameter types. In C++ the two
declarations in the example refer to different versions of the function f.

6.3 Conversions

654This subclause specifies the result required from such an implicit conversion, as well as those that result fromimplicit conversion
explicit conversion a cast operation (an explicit conversion).

v 1.1 January 30, 2008

6.3.1.1 Boolean, characters, and integers 662

C++

The C++ Standard defines a set of implicit and explicit conversions. Declarations contained in library headers
also contain constructs that can cause implicit conversions (through the declaration of constructors) and
support additional explicit conversions— for instance, the complex class.

The C++ language differs from C in that the set of implicit conversions is not fixed. It is also possible for
user-defined declarations to create additional implicit and explicit conversions.

655 The list in 6.3.1.8 summarizes the conversions performed by most ordinary operators;

C++

Clause 4 ‘Standard conversions’ and 5p9 define the conversions in the C++ Standard.

656 it is supplemented as required by the discussion of each operator in 6.5.

C++

There are fewer such supplements in the C++ Standard, partly due to the fact that C++ requires types to be the
same and does not use the concept of compatible type.

C++ supports user-defined overloading of operators. Such overloading could change the behavior defined
in the C++ Standard, however these definitions cannot appear in purely C source code.

657 Conversion of an operand value to a compatible type causes no change to the value or the representation. compatible type
conversion

C++

No such wording applied to the same types appears in the C++ Standard. Neither of the two uses of the C++

term compatible (layout-compatible, reference-compatible) discuss conversions.

6.3.1 Arithmetic operands

6.3.1.1 Boolean, characters, and integers

659 Every integer type has an integer conversion rank defined as follows: conversion rank

C90
The concept of integer conversion rank is new in C99.

C++

The C++ Standard follows the style of documenting the requirements used in the C90 Standard. The
conversions are called out explicitly rather than by rank (which was introduced in C99). C++ supports
operator overloading, where the conversion rules are those of a function call. However, this functionality is
not available in C.

661— The rank of a signed integer type shall be greater than the rank of any signed integer type with less rank
signed integer

vs less precisionprecision.

C++

The relative, promotion, ordering of signed integer types defined by the language is called out explicitly in
clause 5p9.

662 — The rank of long long int shall be greater than the rank of long int, which shall be greater than the rank
standard in-
teger typesrank of int, which shall be greater than the rank of short int, which shall be greater than the rank of signed

char.

January 30, 2008 v 1.1

6.3.1.1 Boolean, characters, and integers671

C++

Clause 5p9 lists the pattern of the usual arithmetic conversions. This follows the relative orderings of rank
given here (except that the types short int and signed char are not mentioned; nor would they be since
the integral promotions would already have been applied to operands having these types).

664— The rank of any standard integer type shall be greater than the rank of any extended integer type with therank
standard inte-
ger relative to
extended

same width.

C++

The C++ Standard specifies no requirements on how an implementation might extend the available integer
types.

666— The rank of _Bool shall be less than the rank of all other standard integer types._Bool
rank

C++

3.9.1p6 As described below, bool values behave as integral types.

4.5p4 An rvalue of type bool can be converted to an rvalue of type int, with false becoming zero and true becoming
one.

The C++ Standard places no requirement on the relative size of the type bool with respect to the other integer
types. An implementation may choose to hold the two possible values in a single byte, or it may hold those
values in an object that has the same width as type long.

668— The rank of any extended signed integer type relative to another extended signed integer type with therank
extended inte-
ger relative to
extended

same precision is implementation-defined, but still subject to the other rules for determining the integer
conversion rank.

C++

The C++ Standard does not specify any properties that must be given to user-defined classes that provide
some form of extended integer type.

670The following may be used in an expression wherever an int or unsigned int may be used:expression
wherever an
int may be used C90

The C90 Standard listed the types, while the C99 Standard bases the specification on the concept of rank.

A char, a short int, or an int bit-field, or their signed or unsigned varieties, or an enumeration type, may be
used in an expression wherever an int or unsigned int may be used.

C++

C++ supports the overloading of operators; for instance, a developer-defined definition can be given to the
binary + operator, when applied to operands having type short. Given this functionality, this C sentence
cannot be said to universally apply to programs written in C++. It is not listed as a difference because it
requires use of C++ functionality for it to be applicable. The implicit conversion sequences are specified
in clause 13.3.3.1. When there are no overloaded operators visible (or to be exact no overloaded operators
taking arithmetic operands, and no user-defined conversion involving arithmetic types), the behavior is the
same as C.

v 1.1 January 30, 2008

6.3.1.1 Boolean, characters, and integers 675

671— An object or expression with an integer type whose integer conversion rank is less than or equal to the
rank of int and unsigned int.

C++

4.5p1An rvalue of type char, signed char, unsigned char, short int, or unsigned short int can be con-
verted to an rvalue of type int if int can represent all the values of the source type; otherwise, the source
rvalue can be converted to an rvalue of type unsigned int.

4.5p2An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) can be converted to an rvalue of the first of the
following types that can represent all the values of its underlying type: int, unsigned int, long, or unsigned
long.

4.5p4An rvalue of type bool can be converted to an rvalue of type int, with false becoming zero and true becoming
one.

The key phrase here is can be, which does not imply that they shall be. However, the situations where these
conversions might not apply (e.g., operator overloading) do not involve constructs that are available in C. For
binary operators the can be conversions quoted above become shall be requirements on the implementation
(thus operands with rank less than the rank of int are supported in this context):

5p9Many binary operators that expect operands of arithmetic or enumeration type cause conversions and yield
result types in a similar way. The purpose is to yield a common type, which is also the type of the result. This
pattern is called the usual arithmetic conversions, which are defined as follows:

— Otherwise, the integral promotions (4.5) shall be performed on both operands.54)

Footnote 5454) As a consequence, operands of type bool, wchar_t, or an enumerated type are converted to some integral
type.

The C++ Standard does not appear to contain explicit wording giving this permission for other occurrences of
operands (e.g., to unary operators). However, it does not contain wording prohibiting the usage (the wording
for the unary operators invariably requires the operand to have an arithmetic or scalar type).

672 — A bit-field of type _Bool, int, signed int, or unsigned int. bit-field
in expression

C90
Support for bit-fields of type _Bool is new in C99.
C++

4.5p3An rvalue for an integral bit-field (9.6) can be converted to an rvalue of type int if int can represent all the
values of the bit-field; otherwise, it can be converted to unsigned int if unsigned int can represent all the
values of the bit-field. If the bit-field is larger yet, no integral promotion applies to it. If the bit-field has an
enumerated type, it is treated as any other value of that type for promotion purposes.

C does not support the definition of bit-fields that are larger than type int, or bit-fields having an enumerated
type.

January 30, 2008 v 1.1

6.3.1.3 Signed and unsigned integers682

675These are called the integer promotions.48)integer promo-
tions

C90

These are called the integral promotions.27)

C++

The C++ Standard uses the C90 Standard terminology (and also points out, 3.9.1p7, “A synonym for integral
type is integer type.”).

676All other types are unchanged by the integer promotions.

C++

This is not explicitly specified in the C++ Standard. However, clause 4.5, Integral promotions, discusses no
other types, so the statement is also true in C++

6.3.1.2 Boolean type

680When any scalar value is converted to _Bool, the result is 0 if the value compares equal to 0;_Bool
converted to

C90
Support for the type _Bool is new in C99.

C++

4.12p1 An rvalue of arithmetic, enumeration, pointer, or pointer to member type can be converted to an rvalue of type
bool. A zero value, null pointer value, or null member pointer value is converted to false;

The value of false is not defined by the C++ Standard (unlike true, it is unlikely to be represented using
any value other than zero). But in contexts where the integer conversions are applied:

4.7p4 . . . the value false is converted to zero . . .

681otherwise, the result is 1.

C++

4.12p1 . . . ; any other value is converted to true.

The value of true is not defined by the C++ Standard (implementations may choose to represent it internally
using any nonzero value). But in contexts where the integer conversions are applied:

4.7p4 . . . the value true is converted to one.

6.3.1.3 Signed and unsigned integers

v 1.1 January 30, 2008

6.3.1.4 Real floating and integer 688

682 When a value with integer type is converted to another integer type other than _Bool, if the value can be
represented by the new type, it is unchanged.

C90
Support for the type _Bool is new in C99, and the C90 Standard did not need to include it as an exception.

683 Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or subtracting one more unsigned integer
conversion tothan the maximum value that can be represented in the new type until the value is in the range of the new

type.49)

C90

Otherwise: if the unsigned integer has greater size, the signed integer is first promoted to the signed integer
corresponding to the unsigned integer; the value is converted to unsigned by adding to it one greater than the
largest number that can be represented in the unsigned integer type.28)

When a value with integral type is demoted to an unsigned integer with smaller size, the result is the nonnegative
remainder on division by the number one greater than the largest unsigned number that can be represented in
the type with smaller size.

The C99 wording is a simpler way of specifying the C90 behavior.

685 either the result is implementation-defined or an implementation-defined signal is raised. signed inte-
ger conversion

implementation-
defined

C90
The specification in the C90 Standard did not explicitly specify that a signal might be raised. This is because
the C90 definition of implementation-defined behavior did not rule out the possibility of an implementation
raising a signal. The C99 wording does not permit this possibility, hence the additional permission given
here.

C++

4.7p3. . . ; otherwise, the value is implementation-defined.

The C++ Standard follows the wording in C90 and does not explicitly permit a signal from being raised in
this context because this behavior is considered to be within the permissible range of implementation-defined
behaviors.

6.3.1.4 Real floating and integer

686 When a finite value of real floating type is converted to an integer type other than _Bool, the fractional part is floating-point
converted
to integerdiscarded (i.e., the value is truncated toward zero).

C90
Support for the type _Bool is new in C99.

688 When a value of integer type is converted to a real floating type, if the value being converted can be represented integer
conversion
to floatingexactly in the new type, it is unchanged.

C++

4.9p2

January 30, 2008 v 1.1

6.3.1.5 Real floating types695

An rvalue of an integer type or of an enumeration type can be converted to an rvalue of a floating point type.
The result is exact if possible.

Who decides what is possible or if it can be represented exactly? A friendly reading suggests that the meaning
is the same as C99.

69048) The integer promotions are applied only: as part of the usual arithmetic conversions, to certain argumentfootnote
48 expressions, to the operands of the unary +, -, and ~ operators, and to both operands of the shift operators,

as specified by their respective subclauses.

C++

In C++, integral promotions are applied also as part of the usual arithmetic conversions, the operands of the
unary +, -, and ~ operators, and to both operands of the shift operators. C++ also performs integer promotions
in contexts not mentioned here, as does C.

69149) The rules describe arithmetic on the mathematical value, not the value of a given type of expression.footnote
49

C90
This observation was not made in the C90 Standard (but was deemed to be implicitly true).

C++

The C++ Standard does not make this observation.

69250) The remaindering operation performed when a value of integer type is converted to unsigned type needfootnote
50 not be performed when a value of real floating type is converted to unsigned type.

C++

4.9p1 An rvalue of a floating point type can be converted to an rvalue of an integer type. The conversion truncates;
that is, the fractional part is discarded. The behavior is undefined if the truncated value cannot be represented
in the destination type.

The conversion behavior, when the result cannot be represented in the destination type is undefined in C++

and unspecified in C.

693Thus, the range of portable real floating values is (−1, Utype_MAX + 1).

C++

The C++ Standard does not make this observation.

694If the value being converted is outside the range of values that can be represented, the behavior is undefined.

C++

4.9p2 Otherwise, it is an implementation-defined choice of either the next lower or higher representable value.

The conversion behavior, when the result is outside the range of values that can be represented in the
destination type, is implementation-defined in C++ and undefined in C.

6.3.1.5 Real floating types

v 1.1 January 30, 2008

6.3.1.7 Real and complex 700

695 When a float is promoted to double or long double, or a double is promoted to long double, its value is float
promoted to dou-

ble or long doubleunchanged (if the source value is represented in the precision and range of its type).

C++

3.9.1p8The type double provides at least as much precision as float, and the type long double provides at least
as much precision as double. The set of values of the type float is a subset of the set of values of the type
double; the set of values of the type double is a subset of the set of values of the type long double.

This only gives a relative ordering on the available precision. It does not say anything about promotion
leaving a value unchanged.

4.6p1An rvalue of type float can be converted to an rvalue of type double. The value is unchanged.

There is no equivalent statement for type double to long double promotions. But there is a general
statement about conversion of floating-point values:

4.8p1An rvalue of floating point type can be converted to an rvalue of another floating point type. If the source value
can be exactly represented in the destination type, the result of the conversion is that exact representation.

Given that (1) the set of values representable in a floating-point type is a subset of those supported by a wider
floating-point type (3.9.1p8); and (2) when a value is converted to the wider type, the exact representation is
required to be used (by 4.8p1)— the value must be unchanged.

696 When a double is demoted to float, a long double is demoted to double or float, or a value being double
demoted to an-

other floating typerepresented in greater precision and range than required by its semantic type (see 6.3.1.8) is explicitly
converted <iso_delete>to its semantic type</iso_delete> (including to its own type), if the value being
converted can be represented exactly in the new type, it is unchanged.

C90
This case is not specified in the C90 Standard.

6.3.1.6 Complex types

699 When a value of complex type is converted to another complex type, both the real and imaginary parts follow
the conversion rules for the corresponding real types.

C90
Support for complex types is new in C99.

C++

The C++ Standard does not provide a specification for how the conversions are to be implemented.

6.3.1.7 Real and complex

700 When a value of real type is converted to a complex type, the real part of the complex result value is determined real type
converted

to complexby the rules of conversion to the corresponding real type and the imaginary part of the complex result value is
a positive zero or an unsigned zero.

C90
Support for complex types is new in C99.

January 30, 2008 v 1.1

6.3.1.8 Usual arithmetic conversions712

C++

The constructors for the complex specializations, 26.2.3, take two parameters, corresponding to the real and
imaginary part, of the matching floating-point type. The default value for the imaginary part is specified as
0.0.

701When a value of complex type is converted to a real type, the imaginary part of the complex value is discarded
and the value of the real part is converted according to the conversion rules for the corresponding real type.

C++

In C++ the conversion has to be explicit. The member functions of the complex specializations (26.2.3) return
a value that has the matching floating-point type.

6.3.1.8 Usual arithmetic conversions

703The purpose is to determine a common real type for the operands and result.common real type

C90
The term common real type is new in C99; the equivalent C90 term was common type.

704For the specified operands, each operand is converted, without change of type domain, to a type whosearithmetic
conversions
type domain un-
changed

corresponding real type is the common real type.

C90
Support for type domains is new in C99.

C++

The term type domain is new in C99 and is not defined in the C++ Standard.
The template class complex contain constructors that can be used to implicitly convert to the matching

complex type. The operators defined in these templates all return the appropriate complex type.
C++ converts all operands to a complex type before performing the operation. In the above example the C
result is 6.0 +∞i, while the C++ result is NaN +∞i.

705Unless explicitly stated otherwise, the common real type is also the corresponding real type of the result,arithmetic
conversions
result type whose type domain is the type domain of the operands if they are the same, and complex otherwise.

C++

The complex specializations (26.2.3) define conversions for float, double and long double to complex
classes. A number of the constructors are defined as explicit, which means they do not happen implicitly,
they can only be used explicitly. The effect is to create a different result type in some cases.
In C++, if the one operand does not have a complex type, it is converted to the corresponding complex type,
and the result type is the same as the other operand having complex type. See footnote 51.footnote

51
719

711Then the following rules are applied to the promoted operands:arithmetic
conversions
integer types C++

The rules in the C++ Standard appear in a bulleted list of types with an implied sequential application order.

712If both operands have the same type, then no further conversion is needed.operand
same type
no further con-
version

C90
For language lawyers only: A subtle difference in requirements exists between the C90 and C99 Standard
(which in practice would have been optimized away by implementations). The rules in the C90 wording were
ordered such that when two operands had the same type, except when both were type int, a conversion was

v 1.1 January 30, 2008

6.3.2.1 Lvalues, arrays, and function designators 721

required. So the type unsigned long needed to be converted to an unsigned long, or a long to a long,
or an unsigned int to an unsigned int.

719 51) For example, addition of a double _Complex and a float entails just the conversion of the float operand footnote
51to double (and yields a double _Complex result).

C90
Support for complex types is new in C99

C++

The conversion sequence is different in C++. In C++ the operand having type float will be converted to
arithmetic
conversions
float

complexfloat prior to the addition operation.

1 #include <complex.h> // the equivalent C++ header
2

3 float complex fc; // std::complex<float> fc; this is the equivalent C++ declaration
4 double d;
5

6 void f(void)
7 {
8 fc + d /* Result has type double complex. */
9 // Result has type complex<float>.

10 ;
11 }

6.3.2 Other operands

6.3.2.1 Lvalues, arrays, and function designators

721 An lvalue is an expression with an object type or an incomplete type other than void;53) lvalue

C90

An lvalue is an expression (with an object type or an incomplete type other than void) that designates an
object.31)

The C90 Standard required that an lvalue designate an object. An implication of this requirement was that
some constraint requirements could only be enforced during program execution (e.g., the left operand of an
assignment operator must be an lvalue). The Committee intended that constraint requirements be enforceable

1289 assignment
operator
modifiable lvalue

during translation.
Technically this is a change of behavior between C99 and C90. But since few implementations enforced

this requirement during program execution, the difference is unlikely to be noticed.

C++

3.10p2An lvalue refers to an object or function.

Incomplete types, other than void, are object types in C++, so all C lvalues are also C++ lvalues. 475 object types

The C++ support for a function lvalue involves the use of some syntax that is not supported in C.

3.10p3

January 30, 2008 v 1.1

6.3.2.1 Lvalues, arrays, and function designators724

As another example, the function

int& f();

yields an lvalue, so the call f() is an lvalue expression.

722if an lvalue does not designate an object when it is evaluated, the behavior is undefined.

C90
In the C90 Standard the definition of the term lvalue required that it designate an object. An expression could
not be an lvalue unless it designated an object.

C++

In C++ the behavior is not always undefined:

3.8p6 Similarly, before the lifetime of an object has started but after the storage which the object will occupy has been
allocated or, after the lifetime of an object has ended and before the storage which the object occupied is reused
or released, any lvalue which refers to the original object may be used but only in limited ways. Such an lvalue
refers to allocated storage (3.7.3.2), and using the properties of the lvalue which do not depend on its value is
well-defined.

723When an object is said to have a particular type, the type is specified by the lvalue used to designate theparticular type

object.

C++

The situation in C++ is rather more complex:

1.8p1 The constructs in a C++ program create, destroy, refer to, access, and manipulate objects. An object is a
region of storage. [Note: A function is not an object, regardless of whether or not it occupies storage in the
way that objects do.] An object is created by a definition (3.1), by a new-expression (5.3.4) or by the
implementation (12.2) when needed. The properties of an object are determined when the object is created. An
object can have a name (clause 3). An object has a storage duration (3.7) which influences its lifetime
(3.8). An object has a type (3.9). The term object type refers to the type with which the object is created.
Some objects are polymorphic (10.3); the implementation generates information associated with each such
object that makes it possible to determine that object’s type during program execution. For other objects, the
interpretation of the values found therein is determined by the type of the expressions (clause 5) used to access
them.

724A modifiable lvalue is an lvalue that does not have array type, does not have an incomplete type, does notmodifiable lvalue

have a const-qualified type, and if it is a structure or union, does not have any member (including, recursively,
any member or element of all contained aggregates or unions) with a const-qualified type.

C++

The term modifiable lvalue is used by the C++ Standard, but understanding what this term might mean
requires joining together the definitions of the terms lvalue and modifiable:

3.10p10

v 1.1 January 30, 2008

6.3.2.1 Lvalues, arrays, and function designators 725

An lvalue for an object is necessary in order to modify the object except that an rvalue of class type can also be
used to modify its referent under certain circumstances.

3.10p14If an expression can be used to modify the object to which it refers, the expression is called modifiable.

There does not appear to be any mechanism for modifying objects having an incomplete type.

8.3.4p5Objects of array types cannot be modified, see 3.10.

This is a case where an object of a given type cannot be modified and follows the C requirement.

7.1.5.1p3. . . ; a const-qualified access path cannot be used to modify an object even if the object referenced is a non-const
object and can be modified through some other access path.

The C++ wording is based on access paths rather than the C method of enumerating the various cases.
However, the final effect is the same.

725 Except when it is the operand of the sizeof operator, the unary & operator, the ++ operator, the -- operator, lvalue
converted

to valueor the left operand of the . operator or an assignment operator, an lvalue that does not have array type is
converted to the value stored in the designated object (and is no longer an lvalue).

C++

Quite a long chain of deduction is needed to show that this requirement also applies in C++. The C++ Standard
uses the term rvalue to refer to the particular value that an lvalue is converted into.

3.10p7Whenever an lvalue appears in a context where an rvalue is expected, the lvalue is converted to an rvalue;

5p8Whenever an lvalue expression appears as an operand of an operator that expects an rvalue for that operand,
the lvalue-to-rvalue (4.1), . . . standard conversions are applied to convert the expression to an rvalue.

The C wording specifies that lvalues are converted unless they occur in specified contexts. The C++ wording
specifies that lvalues are converted in a context where an rvalue is expected. Enumerating the cases where
C++ expects an rvalue we find:

5.3.4p4The lvalue-to-rvalue (4.1), . . . standard conversions are not applied to the operand of sizeof.

What is the behavior for the unary & operator?

4p5There are some contexts where certain conversions are suppressed. For example, the lvalue-to-rvalue conversion
is not done on the operand of the unary & operator.

However, this is a Note: and has no normative status. There is no mention of any conversions in 5.3.1p2-5,
which deals with the unary & operator.

In the case of the postfix ++ and -- operators we have:

5.2.6p1

January 30, 2008 v 1.1

6.3.2.1 Lvalues, arrays, and function designators728

The operand shall be a modifiable lvalue. . . . The result is an rvalue.

In the case of the prefix ++ and -- operators we have:

5.3.2p1 The operand shall be a modifiable lvalue. . . . The value is the new value of the operand; it is an lvalue.

So for the postfix case, there is an lvalue-to-rvalue conversion, although this is never explicitly stated and in
the prefix case there is no conversion.
The C case is more restrictive than C++, which requires a conforming implementation to successfully translate:

1 extern int i;
2

3 void f(void)
4 {
5 ++i = 4; // Well-formed
6 /* Constraint violation */
7 }

For the left operand of the . operator we have:

5.2.5p4 If E1 is an lvalue, then E1.E2 is an lvalue.

The left operand is not converted to an rvalue. For the left operand of an assignment operator we have:

5.17p1 All require a modifiable lvalue as their left operand, . . . ; the result is an lvalue.

The left operand is not converted to an rvalue. And finally for the array type:

4.1p1 An lvalue (3.10) of a non-function, non-array type T can be converted to an rvalue.

An lvalue having an array type cannot be converted to an rvalue (i.e., the C++ Standard contains no other
wording specifying that an array can be converted to an rvalue).

In two cases the C++ Standard specifies that lvalue-to-rvalue conversions are not applied: Clause 5.18p1
left operand of the comma operator and Clause 6.2p1 the expression in an expression statement. In C the
values would be discarded in both of these cases, so there is no change in behavior. In the following cases
C++ performs a lvalue-to-rvalue conversion (however, the language construct is not relevant to C): Clause
8.2.8p3 Type identification; 5.2.9p4 static cast; 8.5.3p5 References.

726If the lvalue has qualified type, the value has the unqualified version of the type of the lvalue;lvalue
value is unquali-
fied C++

The value being referred to in C is what C++ calls an rvalue.

4.1p1 If T is a non-class type, the type of the rvalue is the cv-unqualified version of T. Otherwise, the type of the rvalue
is T.49)

Footnote 49 49) In C++ class rvalues can have cv-qualified types (because they are objects). This differs from ISO C, in
which non-lvalues never have cv-qualified types.

Class rvalues are objects having a structure or union type in C.

v 1.1 January 30, 2008

6.3.2.1 Lvalues, arrays, and function designators 729

728 If the lvalue has an incomplete type and does not have array type, the behavior is undefined.

C++

4.1p1An lvalue (3.10) of a non-function, non-array type T can be converted to an rvalue. If T is an incomplete type, a
program that necessitates this conversion is ill-formed.

4.2p1An lvalue or rvalue of type “array of N T” or “array of unknown bound of T” can be converted to an rvalue of
type “pointer to T.”

The C behavior in this case is undefined; in C++ the conversion is ill-formed and a diagnostic is required.

729 Except when it is the operand of the sizeof operator or the unary & operator, or is a string literal used to array
converted
to pointerinitialize an array, an expression that has type “array of type” is converted to an expression with type “pointer

to type” that points to the initial element of the array object and is not an lvalue.

C90

Except when it is the operand of the sizeof operator or the unary & operator, or is a character string literal
used to initialize an array of character type, or is a wide string literal used to initialize an array with element
type compatible with wchar_t, an lvalue that has type “array of type” is converted to an expression that has
type “pointer to type” that points to the initial element of the array object and is not an lvalue.

The C90 Standard says “ . . . , an lvalue that has type “array of type” is converted . . . ”, while the C99
Standard says “ . . . , an expression that has type . . . ”. It is possible to create a non-lvalue array. In these
cases the behavior has changed. In C99 the expression (g?x:y).m1[1] is no longer a constraint violation
(C90 footnote 50, “A conditional expression does not yield an lvalue”).

In the following, C90 requires that the size of the pointer type be output, while C99 requires that the size
of the array be output.

1 #include <stdio.h>
2

3 struct {
4 int m1@lsquare[]2@rsquare[];
5 } x, y;
6 int g;
7

8 int main(void)
9 {

10 printf("size=%ld\n", sizeof((g?x:y).m1));
11 }

C++

5.3.3p4The . . . , array-to-pointer (4.2), . . . standard conversions are not applied to the operand of sizeof.

4.2p1

January 30, 2008 v 1.1

6.3.2.1 Lvalues, arrays, and function designators732

An lvalue or rvalue of type “array of N T” or “array of unknown bound of T” can be converted to an rvalue of
type “pointer to T.” The result is a pointer to the first element of the array.

4.2p2 A string literal . . . can be converted . . . This conversion is considered only when there is an explicit appropriate
pointer target type, and not when there is a general need to convert from an lvalue to an rvalue.

When is there an explicit appropriate pointer target type? Clause 5.2.1 Subscripting, requires that one of the
operands have type pointer to T. A character string literal would thus be converted in this context.

5.17p3 If the left operand is not of class type, the expression is implicitly converted (clause 4) to the cv-unqualified type
of the left operand.

8.3.5p3 After determining the type of each parameter, any parameter of type “array of T” or “function returning T” is
adjusted to be “pointer to T” or “pointer to function returning T,” respectively.

Clause 5.3.1p2 does not say anything about the conversion of the operand of the unary & operator. Given that
this operator requires its operand to be an lvalue not converting an lvalue array to an rvalue in this context
would be the expected behavior.

There may be other conversions, or lack of, that are specific to C++ constructs that are not supported in C.

730If the array object has register storage class, the behavior is undefined.array object
register storage
class C90

This behavior was not explicitly specified in the C90 Standard.

C++

7.1.1p3 A register specifier has the same semantics as an auto specifier together with a hint to the implementation
that the object so declared will be heavily used.

Source developed using a C++ translator may contain declarations of array objects that include the register
storage class. The behavior of programs containing such declarations will be undefined if processed by a C
translator.

731A function designator is an expression that has function type.function designa-
tor

C++

This terminology is not used in the C++ Standard.

732Except when it is the operand of the sizeof operator54) or the unary & operator, a function designator withfunction
designator
converted to
type

type “function returning type” is converted to an expression that has type “pointer to function returning type”.

C++

5.3.3p4

v 1.1 January 30, 2008

6.3.2.1 Lvalues, arrays, and function designators 736

The . . . , and function-to-pointer (4.3) standard conversions are not applied to the operand of sizeof.

5.3.1p2The result of the unary & operator is a pointer to its operand. The operand shall be an lvalue or a qualified-id.
In the first case, if the type of the expression is “T,” the type of the result is “pointer to T.”

While this clause does not say anything about the conversion of the operand of the unary & operator, given
that this operator returns a result whose type is “pointer to T”, not converting it prior to the operator being
applied would be the expected behavior. What are the function-to-pointer standard conversions?

4.3p1An lvalue of function type T can be converted to an rvalue of type “pointer to T.”

5p8Whenever an lvalue expression appears as an operand of an operator that expects an rvalue for that operand, . . .
, or function-to-pointer (4.3) standard conversions are applied to convert the expression to an rvalue.

In what contexts does an operator expect an rvalue that will cause a function-to-pointer standard conversion?

5.2.2p1For an ordinary function call, the postfix expression shall be either an lvalue that refers to a function (in which
case the function-to-pointer standard conversion (4.3) is suppressed on the postfix expression), or it shall have
pointer to function type.

The suppression of the function-to-pointer conversion is a difference in specification from C, but the final
behavior is the same.

5.16p2If either the second or the third operand has type (possibly cv-qualified) void, then the . . . , and function-to-
pointer (4.3) standard conversions are performed on the second and third operands,

5.17p3If the left operand is not of class type, the expression is implicitly converted (clause 4) to the cv-unqualified type
of the left operand.

8.3.5p3After determining the type of each parameter, any parameter of type “array of T” or “function returning T” is
adjusted to be “pointer to T” or “pointer to function returning T,” respectively.

This appears to cover all cases.

734 53) The name “lvalue” comes originally from the assignment expression E1 = E2, in which the left operand E1 footnote
53is required to be a (modifiable) lvalue.

C++

The C++ Standard does not provide a rationale for the origin of the term lvalue.

736 What is sometimes called “rvalue” is in this International Standard described as the “value of an expression”. rvalue

C++

The C++ Standard uses the term rvalue extensively, but the origin of the term is never explained.

3.10p1

January 30, 2008 v 1.1

6.3.2.2 void741

Every expression is either an lvalue or an rvalue.

73954) Because this conversion does not occur, the operand of the sizeof operator remains a function designatorfootnote
54 and violates the constraint in 6.5.3.4.

C++

The C++ Standard does not specify that use of such a usage renders a program ill-formed:

5.3.3p1 The sizeof operator shall not be applied to an expression that has function or incomplete type, or to an
enumeration type before all its enumerators have been declared, or to the parenthesized name of such types, or
to an lvalue that designates a bit-field.

6.3.2.2 void

740The (nonexistent) value of a void expression (an expression that has type void) shall not be used in any way,void expression

and implicit or explicit conversions (except to void) shall not be applied to such an expression.

C++

3.9.1p9 An expression of type void shall be used only as an expression statement (6.2), as an operand of a comma
expression (5.18), as a second or third operand of ?: (5.16), as the operand of typeid, or as the expression in a
return statement (6.6.3) for a function with the return type void.

The C++ Standard explicitly enumerates the contexts in which a void expression can appear. The effect is to
disallow the value of a void expression being used, or explicitly converted, as per the C wording.
The C++ Standard explicitly permits the use of a void expression in a context that is not supported in C:

1 extern void g(void);
2

3 void f(void)
4 {
5 return g(); /* Constraint violation. */
6 }

5.2.9p4 Any expression can be explicitly converted to type “cv void.”

Thus, C++ supports the void casts allowed in C.

741If an expression of any other type is evaluated as a void expression, its value or designator is discarded.

C90

If an expression of any other type occurs in a context where a void expression is required, its value or designator
is discarded.

The wording in the C90 Standard begs the question, “When is a void expression required”?

v 1.1 January 30, 2008

6.3.2.3 Pointers 745

C++

There are a number of contexts in which an expression is evaluated as a void expression in C. In two of
these cases the C++ Standard specifies that lvalue-to-rvalue conversions are not applied: Clauses 5.18p1 left
operand of the comma operator, and 6.2p1 the expression in an expression statement. The other context is an
explicit cast:

5.2.9p4Any expression can be explicitly converted to type “cv void.” The expression value is discarded.

So in C++ there is no value to discard in these contexts. No other standards wording is required.

742 (A void expression is evaluated for its side effects.)

C++

This observation is not made in the C++ Standard.

6.3.2.3 Pointers

743 A pointer to void may be converted to or from a pointer to any incomplete or object type. pointer to void
converted to/from

C++

5.2.9p10An rvalue of type “pointer to cv void” can be explicitly converted to a pointer to object type.

In C++ incomplete types, other than cv void, are included in the set of object types. 475 object types

In C++ the conversion has to be explicit, while in C it can be implicit. C source code that relies on an implicit
conversion being performed by a translator will not be accepted by a C++ translator.

The suggested resolution to SC22/WG21 DR #137 proposes changing the above sentence, from 5.2.9p10,
to:

Proposed change to
C++

An rvalue of type “pointer to cv1 void” can be converted to an rvalue of type “pointer to cv2 >T”, where T is
an object type and cv2 is the same cv-qualification as, or greater cv-qualification than, cv1.

If this proposal is adopted, a pointer-to qualified type will no longer, in C++, be implicitly converted unless
the destination type is at least as well qualified.

744 A pointer to any incomplete or object type may be converted to a pointer to void and back again; pointer
converted to

pointer to voidC++

5.2.10p7Except that converting an rvalue of type “pointer to T1” to the type “pointer to T2” (where T1 and T2 are object
types and where the alignment requirements of T2 are no stricter than those of T1) and back to its original type
yields the original pointer value, the result of such a pointer conversion is unspecified.

The C++ wording is more general than that for C. A pointer can be converted to any pointer type and back
again, delivering the original value, provided the relative alignments are no stricter.

Source developed using a C++ translator may make use of pointer conversion sequences that are not
required to be supported by a C translator.

745 the result shall compare equal to the original pointer. converted via
pointer to void

compare equal

January 30, 2008 v 1.1

6.3.2.3 Pointers748

C++

5.2.9p10 A value of type pointer to object converted to “pointer to cv void” and back to the original pointer type will
have its original value.

In C++ incomplete types, other than cv void, are included in the set of object types.

746For any qualifier q, a pointer to a non-q-qualified type may be converted to a pointer to the q-qualified versionpointer
converting quali-
fied/unqualified of the type;

C++

4.4p1 An rvalue of type “pointer to cv1 T” can be converted to an rvalue of type “pointer to cv2 T” if “cv2 T” is
more cv-qualified than “cv1 T.”

4.4p2 An rvalue of type “pointer to member of X of type cv1 T” can be converted to an rvalue of type “pointer to
member of X of type cv2 T” if “cv2 T” is more cv-qualified than “cv1 T.”

747the values stored in the original and converted pointers shall compare equal.quali-
fied/unqualified
pointer
compare equal

C++

3.9.2p3 Pointers to cv-qualified and cv-unqualified versions (3.9.3) of layout-compatible types shall have the same value
representation and alignment requirements (3.9).

By specifying layout-compatible types, not the same type, the C++ Standard restricts the freedom of imple-
mentations more than C99 does.

748An integer constant expression with the value 0, or such an expression cast to type void *, is called a nullnull pointer con-
stant pointer constant.55)

C++

4.10p1 A null pointer constant is an integral constant expression (5.19) rvalue of integer type that evaluates to zero.

The C++ Standard only supports the use of an integer constant expression with value 0, as a null pointer
constant. A program that explicitly uses the pointer cast form need not be conforming C++; it depends on
the context in which it occurs. Use of the implementation-provided NULL macro avoids this compatibility
problem by leaving it up to the implementation to use the appropriate value.

The C++ Standard specifies the restriction that a null pointer constant can only be created at translation
time.

Footnote 64

v 1.1 January 30, 2008

6.3.2.3 Pointers 753

64) Converting an integral constant expression (5.19) with value zero always yields a null pointer (4.10), but
converting other expressions that happen to have value zero need not yield a null pointer.

749 If a null pointer constant is converted to a pointer type, the resulting pointer, called a null pointer, is guaranteed null pointer

to compare unequal to a pointer to any object or function.

C++

4.10p1A null pointer constant can be converted to a pointer type; the result is the null pointer value of that type and is
distinguishable from every other value of pointer to object or pointer to function type.

4.11p1A null pointer constant (4.10) can be converted to a pointer to member type; the result is the null member pointer
value of that type and is distinguishable from any pointer to member not created from a null pointer constant.

Presumably distinguishable means that the pointers will compare unequal.

5.10p1Two pointers of the same type compare equal if and only if they are both null, both point to the same object or
function, or both point one past the end of the same array.

From which we can deduce that a null pointer constant cannot point one past the end of an object either.

750 Conversion of a null pointer to another pointer type yields a null pointer of that type. null pointer
conversion

yields null pointerC90
The C90 Standard was reworded to clarify the intent by the response to DR #158.

751 Any two null pointers shall compare equal. null pointer
compare equal

C++

4.10p1Two null pointer values of the same type shall compare equal.

4.11p1Two null member pointer values of the same type shall compare equal.

The C wording does not restrict the null pointers from being the same type.

4.10p3The null pointer value is converted to the null pointer value of the destination type.

This handles pointers to class type. The other cases are handled in 5.2.7p4, 5.2.9p8, 5.2.10p8, and 5.2.11p6.

753 Except as previously specified, the result is implementation-defined, might not be correctly aligned, might not integer-to-pointer
implementation-

definedpoint to an entity of the referenced type, and might be a trap representation.56)

January 30, 2008 v 1.1

6.3.2.3 Pointers759

C++

The C++ Standard specifies the following behavior for the reinterpret_cast, which is equivalent to the C
cast operator in many contexts.

5.2.10p5 A pointer converted to an integer of sufficient size (if any such exists on the implementation) and back to
the same pointer type will have its original value; mappings between pointers and integers are otherwise
implementation-defined.

The C++ Standard provides a guarantee— a round path conversion via an integer type of sufficient size
(provided one exists) delivers the original value. Source developed using a C++ translator may contain
constructs whose behavior is implementation-defined in C.

The C++ Standard does not discuss trap representations for anything other than floating-point types.

754Any pointer type may be converted to an integer type.pointer
permission to
convert to integer C++

5.2.10p4 A pointer can be explicitly converted to any integral type large enough to hold it.

The C++ wording is more restrictive than C, which has no requirement that the integer type be large enough
to hold the pointer.
While the specification of the conversion behaviors differ between C++ and C (undefined vs. implementation-
defined, respectively), differences in the processor architecture is likely to play a larger role in the value of

integer-
to-pointer

implementation-
defined

753

the converted result.

756If the result cannot be represented in the integer type, the behavior is undefined.pointer conversion
undefined behav-
ior C90

If the space provided is not long enough, the behavior is undefined.

The C99 specification has moved away from basing the specification on storage to a more general one based
on representation.

C++

The C++ Standard does not explicitly specify any behavior when the result cannot be represented in the
integer type. (The wording in 5.2.10p4 applies to “any integral type large enough to hold it.”)

757The result need not be in the range of values of any integer type.

C90
The C90 requirement was based on sufficient bits being available, not representable ranges.

C++

There is no equivalent permission given in the C++ Standard.

758A pointer to an object or incomplete type may be converted to a pointer to a different object or incomplete type.pointer
converted to
pointer to different
object or type

C++

The C++ Standard states this in 5.2.9p5, 5.2.9p8, 5.2.10p7 (where the wording is very similar to the C
wording), and 5.2.11p10.

v 1.1 January 30, 2008

6.3.2.3 Pointers 763

759 If the resulting pointer is not correctly aligned57) for the pointed-to type, the behavior is undefined.

C++

5.2.10p7Except that converting an rvalue of type “pointer to T1” to the type “pointer to T2” (where T1 and T2 are object
types and where the alignment requirements of T2 are no stricter than those of T1) and back to its original type
yields the original pointer value, the result of such a pointer conversion is unspecified.

The unspecified behavior occurs if the pointer is not cast back to its original type, or the relative alignments
are stricter.
Source developed using a C++ translator may contain a conversion of a pointer value that makes use of
unspecified behavior, but causes undefined behavior when processed by a C translator.

760 Otherwise, when converted back again, the result shall compare equal to the original pointer. pointer
converted

back to pointerC++

5.2.10p7Except that converting an rvalue of type “pointer to T1” to the type “pointer to T2” (where T1 and T2 are object
types and where the alignment requirements of T2 are no stricter than those of T1) and back to its original type
yields the original pointer value, the result of such a pointer conversion is unspecified.

The C++ Standard does not specify what original pointer value means (e.g., it could be interpreted as
bit-for-bit equality, or simply that the two values compare equal).

761 When a pointer to an object is converted to a pointer to a character type, the result points to the lowest pointer
converted
to pointer

to character
object

lowest ad-
dressed byte

addressed byte of the object.

C90
The C90 Standard does not explicitly specify this requirement.

C++

4.10p2The result of converting a “pointer to cv T” to a “pointer to cv void” points to the start of the storage location
where the object of type T resides, . . .

However, the C wording is for pointer-to character type, not pointer to void.

3.9.2p4A cv-qualified or cv-unqualified (3.9.3) void* shall have the same representation and alignment requirements
as a cv-qualified or cv-unqualified char*.

5.2.10p7A pointer to an object can be explicitly converted to a pointer to an object of different type65). Except that
converting an rvalue of type “pointer to T1” to the type “pointer to T2” (where T1 and T2 are object types and
where the alignment requirements of T2 are no stricter than those of T1) and back to its original type yields the
original pointer value, the result of such a pointer conversion is unspecified.

The C++ Standard does not require the result of the conversion to be a pointer to the lowest addressed byte of
the object. However, it is very likely that C++ implementations will meet the C requirement.

January 30, 2008 v 1.1

6.4 Lexical elements770

76356) The mapping functions for converting a pointer to an integer or an integer to a pointer are intended to befootnote
56
pointer/integer
consistent map-
ping

consistent with the addressing structure of the execution environment.

C++

5.2.10p4 [Note: it is intended to be unsurprising to those who know the addressing structure of the underlying machine.]

Is an unsurprising mapping the same as a consistent one? Perhaps an unsurprising mapping is what C does.
:-)

76457) In general, the concept “correctly aligned” is transitive: if a pointer to type A is correctly aligned for afootnote
57 pointer to type B, which in turn is correctly aligned for a pointer to type C, then a pointer to type A is correctly

aligned for a pointer to type C.

C90
This observation was not explicitly specified in the C90 Standard.

C++

The C++ Standard does not point out that alignment is a transitive property.

765Successive increments of the result, up to the size of the object, yield pointers to the remaining bytes of theobject
point at each
bytes of object.

C90
The C90 Standard does not explicitly specify this requirement.

C++

The equivalent C++ requirement is only guaranteed to apply to pointer to void and it is not possible to
perform arithmetic on this pointer type. However, in practice C++ implementations are likely to meet this C
requirement.

768If a converted pointer is used to call a function whose type is not compatible with the pointed-to type, thecall function
via converted
pointer behavior is undefined.

C++

5.2.10p6 The effect of calling a function through a pointer to a function type (8.3.5) that is not the same as the type used
in the definition of the function is undefined.

C++ requires the parameter and return types to be the same, while C only requires that these types be
compatible. However, the only difference occurs when an enumerated type and its compatible integer type

compati-
ble type

if

631

are intermixed.

6.4 Lexical elements

770
token
syntax
preprocess-
ing token
syntax token:

keyword
identifier
constant
string-literal

v 1.1 January 30, 2008

6.4 Lexical elements 781

punctuator
preprocessing-token:

header-name

identifier
pp-number
character-constant
string-literal
punctuator
each non-white-space character that cannot be one of the above

C90
The non-terminal operator was included as both a token and preprocessing-token in the C90 Standard.
Tokens that were operators in C90 have been added to the list of punctuators in C99.

C++

C++ maintains the C90 distinction between operators and punctuators. C++ also classifies what C calls a
constant as a literal, a string-literal as a literal and a C character-constant is known as a character-literal.

Constraints
Semantics

772 A token is the minimal lexical element of the language in translation phases 7 and 8.

C++

The C++ Standard makes no such observation.

773 The categories of tokens are: keywords, identifiers, constants, string literals, and punctuators.

C90
Tokens that were defined to be operators in C90 have been added to the list of punctuators in C99.

C++

2.6p1There are five kinds of tokens: identifiers, keywords, literals,18) operators, and other separators.

What C calls constants, C++ calls literals. What C calls punctuators, C++ breaks down into operators and
punctuators.

775 The categories of preprocessing tokens are: header names, identifiers, preprocessing numbers, character
constants, string literals, punctuators, and single non-white-space characters that do not lexically match the
other preprocessing token categories.58)

C++

In clause 2.4p2, apart from changes to the terminology, the wording is identical.

January 30, 2008 v 1.1

6.4.1 Keywords788

78158) An additional category, placemarkers, is used internally in translation phase 4 (see 6.10.3.3); it cannotfootnote
58 occur in source files.

C90
The term placemarker is new in C99. They are needed to describe the behavior when an empty macro
argument is the operand of the ## operator, which could not occur in C90.

C++

This category was added in C99 and does not appear in the C++ Standard, which has specified the preprocessor
behavior by copying the words from C90 (with a few changes) rather than providing a reference to the C
Standard.

783There is one exception to this rule: a header name preprocessing token is only recognized within a #includeheader name
exception to rule preprocessing directive, and within such a directive, Header name preprocessing tokens are recognized only

within #include preprocessing directives or in implementation-defined locations within #pragma directives.

C90
This exception was not called out in the C90 Standard and was added by the response to DR #017q39.

C++

This exception was not called out in C90 and neither is it called out in the C++ Standard.

6.4.1 Keywords

788keyword: one of
auto enum restrict unsigned
break extern return void
case float short volatile
char for signed while
const goto sizeof _Bool
continue if static _Complex
default inline struct _Imaginary
do int switch
double long typedef
else register union

C90
Support for the keywords restrict, _Bool, _Complex, and _Imaginary is new in C99.

C++

The C++ Standard includes the additional keywords:

bool mutable this
catch namespace throw
class new true
const_cast operator try
delete private typeid
dynamic_cast protected typename
explicit public using
export reinterpret_cast virtual
false static_cast wchar_t
friend template

The C++ Standard does not include the keywords restrict, _Bool, _Complex, and _Imaginary. How-
ever, identifiers beginning with an underscore followed by an uppercase letter is reserved for use by C++

implementations (17.4.3.1.2p1). So, three of these keywords are not available for use by developers.

v 1.1 January 30, 2008

6.4.2.1 General 797

In C the identifier wchar_t is a typedef name defined in a number of headers; it is not a keyword.

The C99 header <stdbool.h> defines macros named bool, true, false. This header is new in C99 and
is not one of the ones listed in the C++ Standard as being supported by that language.

Semantics

6.4.2 Identifiers
6.4.2.1 General

792
identifier

syntax

identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters

nondigit: one of
_ a b c d e f g h i j k l m

n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

C90
Support for universal-character-name and “other implementation-defined characters” is new in C99.

C++

The C++ Standard uses the term nondigit to denote an identifier-nondigit. The C++ Standard does not
specify the use of other implementation-defined characters. This is because such characters will
have been replaced in translation phase 1 and not be visible here.

116 transla-
tion phase
1

Semantics

793 An identifier is a sequence of nondigit characters (including the underscore _, the lowercase and uppercase
Latin letters, and other characters) and digits, which designates one or more entities as described in 6.2.1.

C90
Explicit support for other characters is new in C99.

795 There is no specific limit on the maximum length of an identifier.

C90
The C90 Standard does not explicitly state this fact.

796 Each universal character name in an identifier shall designate a character whose encoding in ISO/IEC 10646 identifier
UCNfalls into one of the ranges specified in annex D.60)

C90
Support for universal character names is new in C99.

797 The initial character shall not be a universal character name designating a digit.

January 30, 2008 v 1.1

6.4.2.1 General806

C++

This requirement is implied by the terminal non-name used in the C++ syntax. Annex E of the C++ Standard
does not list any UCN digits in the list of supported UCN encodings.

798An implementation may allow multibyte characters that are not part of the basic source character set to appearidentifier
multibyte char-
acter in in identifiers;

C90
This permission is new in C99.

C++

The C++ Standard does not explicitly contain this permission. However, translation phase 1 performs an
transla-

tion phase
1

116

implementation-defined mapping of the source file characters, and an implementation may choose to support
multibyte characters in identifiers via this route.

800When preprocessing tokens are converted to tokens during translation phase 7, if a preprocessing token could
be converted to either a keyword or an identifier, it is converted to a keyword.

C90
This wording is a simplification of the convoluted logic needed in the C90 Standard to deduce from a
constraint what C99 now says in semantics. The removal of this C90 constraint is not a change of behavior,
since it was not possible to write a program that violated it.

C90 6.1.2 Constraints

In translation phase 7 and 8, an identifier shall not consist of the same sequence of characters as a keyword.

80160) On systems in which linkers cannot accept extended characters, an encoding of the universal characterfootnote
60 name may be used in forming valid external identifiers.

C90
Extended characters were not available in C90, so the suggestion in this footnote does not apply.extended

characters
215

Implementation limits

804As discussed in 5.2.4.1, an implementation may limit the number of significant initial characters in an identifier;Implementation
limits

C90
The C90 Standard does not contain this observation.

C++

2.10p1 All characters are significant.20)

C identifiers that differ after the last significant character will cause a diagnostic to be generated by a C++

translator.
Annex B contains an informative list of possible implementation limits. However, “ . . . these quantities

are only guidelines and do not determine compliance.”.

806The number of significant characters in an identifier is implementation-defined.

v 1.1 January 30, 2008

6.4.3 Universal character names 815

C++

2.10p1All characters are significant.20)

References to the same C identifier, which differs after the last significant character, will cause a diagnostic
to be generated by a C++ translator.

There is also an informative annex which states:

Annex Bp2Number of initial characters in an internal identifier or a macro name [1024]

Number of initial characters in an external identifier [1024]

808 If two identifiers differ only in nonsignificant characters, the behavior is undefined.

C++

In C++ all characters are significant, thus this statement does not apply in C++.

6.4.2.2 Predefined identifiers
Semantics

810 The identifier __func__ shall be implicitly declared by the translator as if, immediately following the opening __func__

brace of each function definition, the declaration

static const char __func__[] = "function-name";

appeared, where function-name is the name of the lexically-enclosing function.61)

C90
Support for the identifier __func__ is new in C99.

C++

Support for the identifier __func__ is new in C99 and is not available in the C++ Standard.

814 61) Since the name __func__ is reserved for any use by the implementation (7.1.3), if any other identifier is footnote
61explicitly declared using the name __func__, the behavior is undefined.

C90
Names beginning with two underscores were specified as reserved for any use by the C90 Standard. The
following program is likely to behave differently when translated and executed by a C99 implementation.

1 #include <stdio.h>
2

3 int main(void)
4 {
5 int __func__ = 1;
6

7 printf("d\n", __func__);
8 }

C++

Names beginning with __ are reserved for use by a C++ implementation. This leaves the way open for a C++

implementation to use this name for some purpose.

6.4.3 Universal character names

January 30, 2008 v 1.1

6.4.4 Constants822

815
universal char-
acter name
syntax

universal-character-name:
\u hex-quad
\U hex-quad hex-quad

hex-quad:
hexadecimal-digit hexadecimal-digit

hexadecimal-digit hexadecimal-digit

C90
Support for this syntactic category is new in C99.

Constraints

816A universal character name shall not specify a character whose short identifier is less than 00A0 other thanUCNs
not basic char-
acter set 0024 ($), 0040 (@), or 0060 (‘), nor one in the range D800 through DFFF inclusive.62)

C++

2.2p2 If the hexadecimal value for a universal character name is less than 0x20 or in the range 0x7F–0x9F (inclusive),
or if the universal character name designates a character in the basic source character set, then the program is
ill-formed.

The range of hexadecimal values that are not permitted in C++ is a subset of those that are not permitted in C.
This means that source which has been accepted by a conforming C translator will also be accepted by a
conforming C++ translator, but not the other way around.

Description

817Universal character names may be used in identifiers, character constants, and string literals to designate
characters that are not in the basic character set.

C++

The C++ Standard also supports the use of universal character names in these contexts, but does not say in
words what it specifies in the syntax (although 2.2p2 comes close for identifiers).

Semantics

82062) The disallowed characters are the characters in the basic character set and the code positions reserved byfootnote
62 ISO/IEC 10646 for control characters, the character DELETE, and the S-zone (reserved for use by UTF-16).

C++

The C++ Standard does not make this observation.

6.4.4 Constants

v 1.1 January 30, 2008

6.4.4 Constants 823

822
constant

syntax

constant:
integer-constant
floating-constant
enumeration-constant
character-constant

C++

Footnote 2121) The term “literal” generally designates, in this International Standard, those tokens that are called
“constants” in ISO C.

The C++ Standard also includes string-literal and boolean-literal in the list of literals, but it does
not include enumeration constants in the list of literals. However:

7.2p1The identifiers in an enumerator-list are declared as constants, and can appear wherever constants are
required.

The C++ terminology more closely follows common developer terminology by using literal (a single token)
and constant (a sequence of operators and literals whose value can be evaluated at translation time). The value
of a literal is explicit in the sequence of characters making up its token. A constant may be made up of more
than one token or be an identifier. The operands in a constant have to be evaluated by the translator to obtain
its result value. C uses the more easily confused terminology of integer-constant (a single token) and
constant-expression (a sequence of operators, integer-constant and floating-constant whose
value can be evaluated at translation time).

Constraints

823 The value of a constant shall be in the range of representable values for its type. constant
representable

in its typeC++

The C++ Standard has equivalent wording covering integer-literals (2.13.1p3) character-literals
(2.13.2p3) and floating-literals (2.13.3p1). For enumeration-literals their type depends on the
context in which the question is asked:

7.2p4Following the closing brace of an enum-specifier, each enumerator has the type of its enumeration. Prior to
the closing brace, the type of each enumerator is the type of its initializing value.

7.2p5

January 30, 2008 v 1.1

6.4.4.1 Integer constants825

The underlying type of an enumeration is an integral type that can represent all the enumerator values defined
in the enumeration.

Semantics

824Each constant has a type, determined by its form and value, as detailed later. shall have a type and the valueconstant
type determined
by form and value of a constant shall be in the range of representable values for its type.

C++

2.13.1p2 The type of an integer literal depends on its form, value, and suffix.

2.13.3p1 The type of a floating literal is double unless explicitly specified by a suffix. The suffixes f and F specify float,
the suffixes l and L specify long double.

There are no similar statements for the other kinds of literals, although C++ does support suffixes on the
floating types. However, the syntactic form of string literals, character literals, and boolean literals determines
their type.

6.4.4.1 Integer constants

825
integer constant
syntax

integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

hexadecimal-prefix: one of
0x 0X

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffix
long-suffix unsigned-suffixopt

v 1.1 January 30, 2008

6.4.4.1 Integer constants 836

long-long-suffix unsigned-suffixopt
unsigned-suffix: one of

u U

long-suffix: one of
l L

long-long-suffix: one of
ll LL

C90
Support for long-long-suffix and the nonterminal hexadecimal-prefix is new in C99.

C++

The C++ syntax is identical to the C90 syntax.
Support for long-long-suffix and the nonterminal hexadecimal-prefix is not available in C++.

Description
Semantics

836
integer constant

possible types

Suffix Decimal Constant Octal or Hexadecimal Constant

none int int
long int unsigned int
long long int long int

unsigned long int
long long int
unsigned long long int

u or U unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int unsigned long long int

l or L long int long int
long long int unsigned long int

long long int
unsigned long long int

Both u or U unsigned long int unsigned long int
and l or L unsigned long long int unsigned long long int

ll or LL long long int long long int
unsigned long long int

Both u or U unsigned long long int unsigned long long int
and ll or LL

C90

The type of an integer constant is the first of the corresponding list in which its value can be represented.
Unsuffixed decimal: int, long int, unsigned long int; unsuffixed octal or hexadecimal: int, unsigned int,
long int, unsigned long int; suffixed by the letter u or U: unsigned int, unsigned long int; suffixed by
the letter l or L: long int, unsigned long int; suffixed by both the letters u or U and l or L: unsigned long
int.

January 30, 2008 v 1.1

6.4.4.2 Floating constants842

Support for the type long long is new in C99.
The C90 Standard will give a sufficiently large decimal constant, which does not contain a u or U suffix—
the type unsigned long. The C99 Standard will never give a decimal constant that does not contain either
of these suffixes— an unsigned type.

Because of the behavior of C++, the sequencing of some types on this list has changed from C90. The
following shows the entries for the C90 Standard that have changed.

Suffix Decimal Constant

none int
long int
unsigned long int

l or L long int
unsigned long int

Under C99, the none suffix, and l or L suffix, case no longer contain an unsigned type on their list.
A decimal constant, unless given a u or U suffix, is always treated as a signed type.

C++

2.13.1p2 If it is decimal and has no suffix, it has the first of these types in which its value can be represented: int, long
int; if the value cannot be represented as a long int, the behavior is undefined. If it is octal or hexadecimal
and has no suffix, it has the first of these types in which its value can be represented: int, unsigned int, long
int, unsigned long int. If it is suffixed by u or U, its type is the first of these types in which its value can be
represented: unsigned int, unsigned long int. If it is suffixed by l or L, its type is the first of these types
in which its value can be represented: long int, unsigned long int. If it is suffixed by ul, lu, uL, Lu, Ul,
lU, UL, or LU, its type is unsigned long int.

The C++ Standard follows the C99 convention of maintaining a decimal constant as a signed and never an
unsigned type.
The type long long, and its unsigned partner, is not available in C++.

There is a difference between C90 and C++ in that the C90 Standard can give a sufficiently large decimal
literal that does not contain a u or U suffix— the type unsigned long. Neither the C++ or C99 Standard will
give a decimal constant that does not contain either of these suffixes— an unsigned type.

837If an integer constant cannot be represented by any type in its list, it may have an extended integer type, if the
extended integer type can represent its value.

C90
Explicit support for extended types is new in C99.

C++

The C++ Standard allows new object types to be created. It does not specify any mechanism for giving literals
these types.
A C translation unit that contains an integer constant that has an extended integer type may not be accepted
by a conforming C++ translator. But then it may not be accepted by another conforming C translator either.
Support for the construct is implementation-defined.

6.4.4.2 Floating constants

842
floating constant
syntax

floating-constant:

v 1.1 January 30, 2008

6.4.4.2 Floating constants 844

decimal-floating-constant
hexadecimal-floating-constant

decimal-floating-constant:

fractional-constant exponent-partopt floating-suffixopt
digit-sequence exponent-part floating-suffixopt

hexadecimal-floating-constant:
hexadecimal-prefix hexadecimal-fractional-constant

binary-exponent-part floating-suffixopt
hexadecimal-prefix hexadecimal-digit-sequence

binary-exponent-part floating-suffixopt
fractional-constant:

digit-sequenceopt . digit-sequence
digit-sequence .

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

hexadecimal-fractional-constant:
hexadecimal-digit-sequenceopt .

hexadecimal-digit-sequence
hexadecimal-digit-sequence .

binary-exponent-part:
p signopt digit-sequence
P signopt digit-sequence

hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit

floating-suffix: one of
f l F L

C90
Support for hexadecimal-floating-constant is new in C99. The terminal decimal-floating-constant
is new in C99 and its right-hand side appeared on the right of floating-constant in the C90 Standard.

C++

The C++ syntax is identical to that given in the C90 Standard.
Support for hexadecimal-floating-constant is not available in C++.

Description

844 The components of the significand part may include a digit sequence representing the whole-number part, whole-
number part
fraction partfollowed by a period (.), followed by a digit sequence representing the fraction part.

C++

2.13.3p1
January 30, 2008 v 1.1

6.4.4.2 Floating constants852

The integer part, the optional decimal point and the optional fraction part form the significant part of the floating
literal.

The use of the term significant may be a typo. This term does not appear in the C++ Standard and it is only
used in this context in one paragraph.

845The components of the exponent part are an e, E, p, or P followed by an exponent consisting of an optionally
signed digit sequence.

C90
Support for p and P is new in C99.

C++

Like C90, the C++ Standard does not support the use of p, or P.

Semantics

848The significand part is interpreted as a (decimal or hexadecimal) rational number;

C90
Support for hexadecimal significands is new in C99.

C++

The C++ Standard does not support hexadecimal significands, which are new in C99.

849the digit sequence in the exponent part is interpreted as a decimal integer.

C++

2.13.3p1 . . . , an optionally signed integer exponent, . . .

There is no requirement that this integer exponent be interpreted as a decimal integer. Although there is
wording specifying that both the integer and fraction parts are in base 10, there is no such wording for the
exponent part. It would be surprising if the C++ Standard were to interpret 1.2e011 as representing 1.2×109;
therefore this issue is not specified as a difference.

851For hexadecimal floating constants, the exponent indicates the power of 2 by which the significand part is to
be scaled.

C90
Support for hexadecimal floating constants is new in C99.

C++

The C++ Standard does not support hexadecimal floating constants.

852For decimal floating constants, and also for hexadecimal floating constants when FLT_RADIX is not a power offloating constant
representable
value chosen 2, the result is either the nearest representable value, or the larger or smaller representable value immediately

adjacent to the nearest representable value, chosen in an implementation-defined manner.

C90
Support for hexadecimal floating constants is new in C99.

C++

2.13.3p1

v 1.1 January 30, 2008

6.4.4.3 Enumeration constants 863

If the scaled value is in the range of representable values for its type, the result is the scaled value if representable,
else the larger or smaller representable value nearest the scaled value, chosen in an implementation-defined
manner.

857 Floating constants are converted to internal format as if at translation-time. floating constant
internal format

C90
No such requirement is explicitly specified in the C90 Standard.
In C99 floating constants may convert to more range and precision than is indicated by their type; that is,
0.1f may be represented as if it had been written 0.1L.

354
FLT_EVAL_METHOD

C++

Like C90, there is no such requirement in the C++ Standard.

858 The conversion of a floating constant shall not raise an exceptional condition or a floating-point exception at floating con-
stant conversion

not raise
exception

execution time.

C90
No such requirement was explicitly specified in the C90 Standard.

C++

Like C90, there is no such requirement in the C++ Standard.

Recommended practice

859 The implementation should produce a diagnostic message if a hexadecimal constant cannot be represented hexadeci-
mal constant

not repre-
sented exactly

exactly in its evaluation format;

C90
Recommended practices are new in C99, as are hexadecimal floating constants.

C++

The C++ Standard does not specify support for hexadecimal floating constants.

861 The translation-time conversion of floating constants should match the execution-time conversion of character
strings by library functions, such as strtod, given matching inputs suitable for both conversions, the same
result format, and default execution-time rounding.64)

C90
This recommendation is new in C99.

C++

No such requirement is explicitly specified in the C++ Standard.

862 64) The specification for the library functions recommends more accurate conversion than required for floating footnote
64constants (see 7.20.1.3).

C++

There observation is not made in the C++ Standard. The C++ Standard includes the C library by reference, so
by implication this statement is also true in C++.

6.4.4.3 Enumeration constants

January 30, 2008 v 1.1

6.4.4.4 Character constants866

863enumeration-constant:
identifier

C++

The C++ syntax uses the terminator enumerator.

Semantics

864An identifier declared as an enumeration constant has type int.enumera-
tion constant
type C++

7.2p4 Following the closing brace of an enum-specifier, each enumerator has the type of its enumeration. Prior to the
closing brace, the type of each enumerator is the type of its initializing value. If an initializer is specified for an
enumerator, the initializing value has the same type as the expression. If no initializer is specified for the first
enumerator, the type is an unspecified integral type. Otherwise the type is the same as the type of the initializing
value of the preceding enumerator unless the incremented value is not representable in that type, in which case
the type is an unspecified integral type sufficient to contain the incremented value.

This is quite a complex set of rules. The most interesting consequence of them is that each enumerator, in the
same type definition, can have a different type (at least while the enumeration is being defined):
In C the type of the enumerator is always int. In C++ it can vary, on an enumerator by enumerator basis, for
the same type definition. This behavior difference is only visible outside of the definition if an initializing
value is calculated by applying the sizeof operator to a prior enumerator in the current definition.

1 #include <limits.h>
2

3 enum TAG { E1 = 2L, // E1 has type long
4 E2 = sizeof(E1), // E2 has type size_t, value sizeof(long)
5 E3 = 9, // E3 has type int
6 E4 = ’4’, // E4 has type char
7 E5 = INT_MAX, // E5 has type int
8 E6, // is E6 an unsigned int, or a long?
9 E7 = sizeof(E4), // E2 has type size_t, value sizeof(char)

10 } // final type is decided when the } is encountered
11 e_val;
12

13 int probably_a_C_translator(void)
14 {
15 return (E2 == E7);
16 }

Source developed using a C++ translator may contain enumeration with values that would cause a constraint
violation if processed by a C translator.

1 #include <limits.h>
2

3 enum TAG { E1 = LONG_MAX }; /* Constraint violation if LONG_MAX != INT_MAX */

6.4.4.4 Character constants

v 1.1 January 30, 2008

6.4.4.4 Character constants 869

866
charac-

ter constant
syntax

escape sequence
syntaxcharacter-constant:

’ c-char-sequence ’
L’ c-char-sequence ’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote ’, backslash \, or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

simple-escape-sequence: one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

C90
Support for universal-character-name is new in C99.

C++

The C++ Standard classifies universal-character-name as an escape-sequence, not as a c-char. This
makes no difference in practice to the handling of such c-chars.

Description

867 An integer character constant is a sequence of one or more multibyte characters enclosed in single-quotes, integer char-
acter constantas in ’x’.

C90
The example of ab as an integer character constant has been removed from the C99 description.

C++

2.13.2p1A character literal is one or more characters enclosed in single quotes, as in ’x’, . . .

A multibyte character is replaced by a universal-character-name in C++ translation phase 1. So, the C++

Standard does not need to refer to such entities here.

January 30, 2008 v 1.1

6.4.4.4 Character constants878

869With a few exceptions detailed later, the elements of the sequence are any members of the source character
set;

C++

2.13.2p5 [Note: in translation phase 1, a universal-character-name is introduced whenever an actual extended
character is encountered in the source text. Therefore, all extended characters are described in terms of
universal-character-names. However, the actual compiler implementation may use its own native character
set, so long as the same results are obtained.]

In C++ all elements in the sequence are characters in the source character set after translation phase 1. The
creation of character-literal preprocessing tokens occurs in translation phase 3, rendering this statement
not applicable to C++.

870they are mapped in an implementation-defined manner to members of the execution character set.character
constant
mapped C++

2.13.2p1 An ordinary character literal that contains a single c-char has type char, with value equal to the numerical
value of the encoding of the c-char in the execution character set.

2.2p3 The values of the members of the execution character sets are implementation-defined, . . .

2.13.2p2 The value of a wide-character literal containing a single c-char has value equal to the numerical value of the
encoding of the c-char in the execution wide-character set.

Taken together, these statements have the same meaning as the C specification.

871The single-quote ’, the double-quote ", the question-mark ?, the backslash \, and arbitrary integer values areescape se-
quences
character con-
stant
character
constant
escape se-
quences

representable according to the following table of escape sequences:

single quote ’ \’
double quote " \"
question mark ? \?
backslash \ \\
octal character \octal digits
hexadecimal character \xhexadecimal digits

C++

The C++ wording, in Clause 2.13.2p3, does discuss arbitrary integer values and the associated Table 5 includes
all of the defined escape sequences.

878In addition, characters not in the basic character set are representable by universal character names and
certain nongraphic characters are representable by escape sequences consisting of the backslash \ followed
by a lowercase letter: \a, \b, \f, \n, \r, \t, and \v.65)

v 1.1 January 30, 2008

6.4.4.4 Character constants 883

C90
Support for universal character names is new in C99.

C++

Apart from the rule of syntax given in Clause 2.13.2 and Table 5, there is no other discussion of these escape
sequences in the C++ Standard. :-O

880 If any other character follows a backslash, the result is not a token and a diagnostic is required.

C90

If any other escape sequence is encountered, the behavior is undefined.

C++

There is no equivalent sentence in the C++ Standard. However, this footnote is intended to explicitly spell out
what the C syntax specifies. The C++ syntax specification is identical, but the implications have not been
explicitly called out.

Constraints

882 The value of an octal or hexadecimal escape sequence shall be in the range of representable values for the escape sequence
value within rangetype unsigned char for an integer character constant, or the unsigned type corresponding to wchar_t for a

wide character constant.

C++

2.13.2p4The value of a character literal is implementation-defined if it falls outside of the implementation-defined range
defined for char (for ordinary literals) or wchar_t (for wide literals).

The wording in the C++ Standard applies to the entire character literal, not to just a single character within it
(the C case). In practice this makes no difference because C++ does not provide the option available to C
implementations of allowing more than one character in an integer character constant.
The range of values that can be represented in the type char may be a subset of those representable in the
type unsigned char. In some cases defined behavior in C becomes implementation-defined behavior in
C++.

1 char *p = "\0x80"; /* does not affect the conformance status of the program */
2 // if CHAR_MAX is 127, behavior is implementation-defined

In C a value outside of the representable range causes a diagnostic to be issued. The C++ behavior is
implementation-defined in this case. Source developed using a C++ translator may need to be modified before
it is acceptable to a C translator.

Semantics

883 An integer character constant has type int. character
constant

typeC++

2.13.2p1

January 30, 2008 v 1.1

6.4.4.4 Character constants888

An ordinary character literal that contains a single c-char has type char, . . .

The only visible effect of this difference in type, from the C point of view, is the value returned by sizeof. In
the C++ case the value is always 1, while in C the value is the same as sizeof(int), which could have the value
1 (for some DSP chips), but for most implementations is greater than 1.

2.13.2p1 A multicharacter literal has type int and implementation-defined value.

The behavior in this case is identical to C.

885The value of an integer character constant containing more than one character (e.g., ’ab’), or containing acharacter
constant
more than one
character

character or escape sequence that does not map to a single-byte execution character, is implementation-
defined.

C90

The value of an integer character constant containing more than one character, or containing a character or
escape sequence not represented in the basic execution character set, is implementation-defined.

C++

The C++ Standard does not include any statement covering escape sequences that are not represented in the
execution character set. The other C requirements are covered by words (2.13.2p1) having the same meaning.

wide charac-
ter escape
sequence

implementation-
defined

889

886If an integer character constant contains a single character or escape sequence, its value is the one thatcharacter
constant
single charac-
ter value

results when an object with type char whose value is that of the single character or escape sequence is
converted to type int.

C++

The requirement contained in this sentence is not applicable to C++ because this language gives character
literals the type char. There is no implied conversion to int in C++.

887A wide character constant has type wchar_t, an integer type defined in the <stddef.h> header.wide charac-
ter constant
type of C++

2.13.2p2 A wide-character literal has type wchar_t.23)

In C++ wchar_t is one of the basic types (it is also a keyword). There is no need to define it in the <stddef.h>
header.

3.9.1p5 Type wchar_t shall have the same size, signedness, and alignment requirements (3.9) as one of the other integral
types, called its underlying type.

Although C++ includes the C library by reference, the <stddef.h> header, in a C++ implementation, cannot
contain a definition of the type wchar_t, because wchar_t is a keyword in C++. It is thus possible to use the
type wchar_t in C++ without including the <stddef.h> header.

888The value of a wide character constant containing a single multibyte character that maps to a member of themultibyte
character
mapped by
mbtowc

extended execution character set is the wide character corresponding to that multibyte character, as defined
by the mbtowc function, with an implementation-defined current locale.

v 1.1 January 30, 2008

6.4.5 String literals 899

C++

2.13.2p2The value of a wide-character literal containing a single c-char has value equal to the numerical value of the
encoding of the c-char in the execution wide-character set.

The C++ Standard includes the mbtowc function by including the C90 library by reference. However, it does
not contain any requirement on the values of wide character literals corresponding to the definitions given for
the mbtowc function (and its associated locale).
There is no requirement for C++ implementations to use a wide character mapping corresponding to that used
by the mbtowc library function. However, it is likely that implementations of the two languages, in a given
environment, will share the same library.

889 The value of a wide character constant containing more than one multibyte character, or containing a multibyte wide character
escape sequence

implementation-
defined

character or escape sequence not represented in the extended execution character set, is implementation-
defined.

C++

The C++ Standard (2.13.2p2) does not include any statement covering escape sequences that are not repre-
sented in the execution character set.

6.4.5 String literals

895
string literal

syntax

string-literal:
" s-char-sequenceopt "
L" s-char-sequenceopt "

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote ", backslash \\, or new-line character
escape-sequence

C++

In C++ a universal-character-name is not considered to be an escape sequence. It therefore appears on
the right side of the s-char rule.

Description
Semantics

899 In translation phase 6, the multibyte character sequences specified by any sequence of adjacent character
and wide string literal tokens are concatenated into a single multibyte character sequence.

C90
The C90 Standard does not allow character and wide string literals to be mixed in a concatenation:

In translation phase 6, the multibyte character sequences specified by any sequence of adjacent character string
literal tokens, or adjacent wide string literal tokens, are concatenated into a single multibyte character sequence.

The C90 Standard contains the additional sentence:

January 30, 2008 v 1.1

6.4.5 String literals905

If a character string literal token is adjacent to a wide string literal token, the behavior is undefined.

C90 does not support the concatenation of a character string literal with a wide string literal.

C++

2.13.4p3 In translation phase 6 (2.1), adjacent narrow string literals are concatenated and adjacent wide string literals
are concatenated. If a narrow string literal token is adjacent to a wide string literal token, the behavior is
undefined.

The C++ specification has the same meaning as that in the C90 Standard. If string literals and wide string
literals are adjacent, the behavior is undefined. This is not to say that a translator will not concatenate them,
only that such behavior is not guaranteed.

904For character string literals, the array elements have type char, and are initialized with the individual bytes ofstring literal
type the multibyte character sequence;

C++

2.13.4p1 An ordinary string literal has type “array of n const char” and static storage duration (3.7), where n is the
size of the string. . . .

1 char *g_p = "abc"; /* const applies to the array, not the pointed-to type. */
2

3 void f(void)
4 {
5 "xyz"@lsquare[]1@rsquare[] = ’Y’; /* relies on undefined behavior, need not be diagnosed */
6 "xyz"@lsquare[]1@rsquare[] = ’Y’; // ill-formed, object not modifiable lvalue
7 }

905for wide string literals, the array elements have type wchar_t, and are initialized with the sequence of widewide string literal
type of characters corresponding to the multibyte character sequence, as defined by the mbstowcs function with an

implementation-defined current locale.

C90
The specification that mbstowcs be used as an implementation-defined current locale is new in C99.

C++

2.13.4p1 An ordinary string literal has type “array of n const char” and static storage duration (3.7), where n is the
size of the string. . . .

The C++ Standard does not specify that mbstowcs be used to define how multibyte characters in a wide string
literal be mapped:

2.13.4p5

v 1.1 January 30, 2008

6.4.6 Punctuators 913

The size of a wide string literal is the total number of escape sequences, universal-character-names, and other
characters, plus one for the terminating L’\0’.

The extent to which the C library function mbstowcs will agree with the definition given in the C++ Standard
will depend on its implementation-defined behavior in the current locale.

906 66) A character string literal need not be a string (see 7.1.1), because a null character may be embedded in it footnote
66by a \0 escape sequence.

C++

This observation is not made in the C++ document.

907 The value of a string literal containing a multibyte character or escape sequence not represented in the
execution character set is implementation-defined.

C90
This specification of behavior is new in C99.

C++

Like C90, there is no such explicit specification in the C+ Standard.

908 It is unspecified whether these arrays are distinct provided their elements have the appropriate values. string literal
distinct array

C++

Clause 2.13.4p4 specifies that the behavior is implementation-defined.

6.4.6 Punctuators

912
punctuator

syntax

punctuator: one of
[] () { } . ->
++ -- & * + - ~ !
/ % << >> < > <= >= == != ^ | && ||
? : ; ...
= *= /= %= += -= <<= >>= &= ^= |=
, # ##
<: :> <% %> %: %:%:

C90
Support for <: :> <% %> %: %:%: was added in Amendment 1 to the C90 Standard. In the C90 Standard
there were separate nonterminals for punctuators and operators. The C99 Standard no longer contains a
syntactic category for operators. The two nonterminals are merged in C99, except for sizeof, which was
listed as an operator in C90.

C++

The C++ nonterminal preprocessing-op-or-punc (2.12p1) also includes:

:: .* ->* new delete
and and_eq bitand bitor compl
not not_eq or or_eq xor xor_eq

The identifiers listed above are defined as macros in the header <iso646.h> in C. This header must be
included before these identifiers are treated as having their C++ meaning.

Semantics

January 30, 2008 v 1.1

6.4.7 Header names921

913A punctuator is a symbol that has independent syntactic and semantic significance.

C90

A punctuator is a symbol that has independent syntactic and semantic significance but does not specify an
operation to be performed that yields a value.

The merging of this distinction between operators and punctuators, in C99, makes no practical difference.

C++

This observation is not made in the C++ Standard.

914Depending on context, it may specify an operation to be performed (which in turn may yield a value or aoperator

function designator, produce a side effect, or some combination thereof) in which case it is known as an
operator (other forms of operator also exist in some contexts).

C90
In the C90 Standard operators were defined as a separate syntactic category, some of which shared the same
spelling as some punctuators.

An operator specifies an operation to be performed (an evaluation) that yields a value, or yields a designator, or
produces a side effect, or a combination thereof.

915An operand is an entity on which an operator acts.

C++

The nearest C++ comes to defining operand is:

5p1 An expression is a sequence of operators and operands that specifies a computation.

916In all aspects of the language, the six tokens67)digraphs

<: :> <% %> %: %:%:

behave, respectively, the same as the six tokens

[] { } # ##

except for their spelling.68)

C90
These alternative spellings for some tokens were introduced in Amendment 1 to the C90 Standard. As such
there is no change in behavior between C90 and C99.

6.4.7 Header names
Semantics

920If the characters ’, \, ", //, or /* occur in the sequence between the < and > delimiters, the behavior ischaracters
between < and
>delimiters undefined.

v 1.1 January 30, 2008

6.4.8 Preprocessing numbers 927

C90
The character sequence // was not specified as causing undefined behavior in C90 (which did not treat this
sequence as the start of a comment).

921 Similarly, if the characters ’, \, //, or /* occur in the sequence between the " delimiters, the behavior is
undefined.69)

C90
The character sequence // was not specified as causing undefined behavior in C90 (which did not treat this
sequence as the start of a comment).

924
header name

recognized
within #includeA header name preprocessing token is Header name preprocessing tokens are recognized only within a

#include preprocessing directive. directives or in implementation-defined locations within #pragma direc-
tivesDR324).

C90
This statement summarizes the response to DR #017q39 against the C90 Standard.

C++

The C++ Standard contains the same wording as the C90 Standard.

6.4.8 Preprocessing numbers

927
pp-number

syntax

pp-number:
digit
. digit
pp-number digit
pp-number identifier-nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

C90
The C90 Standard used the syntax nonterminal nondigit rather than identifier-nondigit.

RationaleC99 replaces nondigit with identifier-nondigit in the grammar to allow the token pasting operator, ##, to
work as expected. Given the code

#define mkident(s) s ## 1m
/* ... */
int mkident(int) = 0;

if an identifier is passed to the mkident macro, then 1m is parsed as a single pp-number, a valid single
identifier is produced by the ## operator, and nothing harmful happens. But consider a similar construction
that might appear using Greek script:

#define µµµµk(p) p ## 1µ
/* ... */
int µk(int) = 0;

January 30, 2008 v 1.1

6.4.9 Comments936

For this code to work, 1µ must be parsed as only one pp-token. Restricting pp-numbers to only the basic
letters would break this.

Support for additional digits via UCNs is new in C99. Also support for p and P in a pp-number is new in
C99.

C++

Support for p and P in a pp-number is new in C99 and is not specified in the C++ Standard.

Description

928A preprocessing number begins with a digit optionally preceded by a period (.) and may be followed by valid
identifier characters and the character sequences e+, e-, E+, E-, p+, p-, P+, or P-.

C90
Support for the P form of exponent is new in C99.

C++

The C++ Standard does not make this observation and like C90 does not support the P form of the exponent.

929Preprocessing number tokens lexically include all floating and integer constant tokens.

C++

This observation is not made in the C++ Standard.

Semantics

6.4.9 Comments

934Except within a character constant, a string literal, or a comment, the characters /* introduce a comment.comment
/*

C++

The C++ Standard does not explicitly specify the exceptions implied by the phases of translation.

935The contents of such a comment are examined only to identify multibyte characters and to find the characterscomment
contents only
examined to */ that terminate it.70)

C++

The C++ Standard gives no explicit meaning to any sequences of characters within a comment. It does call
out the fact that comments do not nest and that the character sequence // is treated like any other character
sequence within such a comment.

2.7p1 The characters /* start a comment, which terminates with the characters */.

936Except within a character constant, a string literal, or a comment, the characters // introduce a comment thatcomment
// includes all multibyte characters up to, but not including, the next new-line character.

C90
Support for this style of comment is new in C99.
There are a few cases where a program’s behavior will be altered by support for this style of commenting:

1 x = a //* */ b
2 + c;
3

v 1.1 January 30, 2008

6.5 Expressions 946

4 #define f(x) #x
5

6 f(a//) + g(
7);

Occurrences of these constructs are likely to be rare.

C++

The C++ Standard does not explicitly specify the exceptions implied by the phases of translation.

937 The contents of such a comment are examined only to identify multibyte characters and to find the terminating
new-line character.

C++

The C++ Standard includes some restrictions on the characters that can occur after the characters //, which
are not in

937 The contents of such a comment are examined only to identify multibyte characters and to find the terminating
new-line character.
C90.

2.7p1The characters // start a comment, which terminates with the next new-line character. If there is a form-feed
or a vertical-tab character in such a comment, only white-space characters shall appear between it and the
new-line that terminates the comment; no diagnostic is required.

A C source file using the // style of comments may use form-feed or vertical-tab characters within that
comment. Such a source file may not be acceptable to a C++ implementation. Occurrences of these
characters within a comment are likely to be unusual.

6.5 Expressions

940 An expression is a sequence of operators and operands that specifies computation of a value, or that expressions

designates an object or a function, or that generates side effects, or that performs a combination thereof.

C++

The C++ Standard (5p1) does not explicitly specify the possibility that an expression can designate an object
or a function.

941 Between the previous and next sequence point an object shall have its stored value modified at most once by object
modified once

between se-
quence points

the evaluation of an expression. DR287)

C++

5p4Between the previous and next sequence point a scalar object shall have its stored value modified at most once
by the evaluation of an expression.

The C++ Standard avoids any ambiguity in the interpretation of object by specifying scalar type.

945 Some operators (the unary operator ~, and the binary operators <<, >>, &, ^, and |, collectively described as bitwise operators

bitwise operators) are required to have operands that have integer type.

C++

The C++ Standard does not define the term bitwise operators, although it does use the term bitwise in the
description of the &, ^ and | operators.

January 30, 2008 v 1.1

6.5 Expressions961

946These operators yield values that depend on the internal representations of integers, and have implementation-bitwise operations
signed types defined and undefined aspects for signed types.

C++

These operators exhibit the same range of behaviors in C++. This is called out within the individual
descriptions of each operator in the C++ Standard.

947If an exceptional condition occurs during the evaluation of an expression (that is, if the result is not mathemati-exception condi-
tion cally defined or not in the range of representable values for its type), the behavior is undefined.

C90
The term exception was defined in the C90 Standard, not exceptional condition.

C++

5p5 If during the evaluation of an expression, the result is not mathematically defined or not in the range of
representable values for its type, the behavior is undefined, unless such an expression is a constant expression
(5.19), in which case the program is ill-formed.

The C++ language contains explicit exception-handling constructs (Clause 15, try/throw blocks). However,
these are not related to the mechanisms being described in the C Standard. The term exceptional condition is
not defined in the C sense.

948The effective type of an object for an access to its stored value is the declared type of the object, if any.73)effective type

C90
The term effective type is new in C99.

C++

The term effective type is not defined in C++. A type needs to be specified when the C++ new operator is used.
However, the C++ Standard includes the C library, so it is possible to allocate storage via a call to the malloc
library function, which does not associate a type with the allocated storage.

954Within each major subclause, the operators have the same precedence.

C++

This observation is true in the C++ Standard, but is not pointed out within that document.

95673) Allocated objects have no declared type.footnote
73

C90
The C90 Standard did not point this fact out.

C++

The C++ operator new allocates storage for objects. Its usage also specifies the type of the allocated object.
The C library is also included in the C++ Standard, providing access to the malloc and calloc library
functions (which do not contain a mechanism for specifying the type of the object created).

960An object shall have its stored value accessed only by an lvalue expression that has one of the followingobject
value accessed if
type types:74)

C90
In the C90 Standard the term used in the following types was derived type. The term effective type is new in
the C99 Standard and is used throughout the same list.

v 1.1 January 30, 2008

6.5 Expressions 969

961— a type compatible with the effective type of the object, object
stored value

accessed only byC++

3.10p15— the dynamic type of the object,

1.3.3 dynamic typethe type of the most derived object (1.8) to which the lvalue denoted by an lvalue expression refers. [Example: if
a pointer (8.3.1) p whose static type is “pointer to class B” is pointing to an object of class D, derived from B
(clause 10), the dynamic type of the expression *p is “D.” References (8.3.2) are treated similarly.] The dynamic
type of an rvalue expression is its static type.

The difference between an object’s dynamic and static type only has meaning in C++.
Use of effective type means that C gives types to some objects that have no type in C++. C++ requires the
types to be the same, while C only requires that the types be compatible. However, the only difference occurs

631 compati-
ble type
if

when an enumerated type and its compatible integer type are intermixed.

966 — a character type.

C++

3.10p15— a char or unsigned char type.

The C++ Standard does not explicitly specify support for the character type signed char. However, it
does specify that the type char may have the same representation and range of values as signed char (or

516 charrange, repre-
sentation and
behavior

unsigned char).
It is common practice to access the subcomponents of an object using a char or unsigned char type.

However, there is code that uses signed char, and it would be a brave vendor whose implementation did
not assume that objects having type signed char were not a legitimate alias for accesses to any object.

967 A floating expression may be contracted, that is, evaluated as though it were an atomic operation, thereby contracted

omitting rounding errors implied by the source code and the expression evaluation method.75)

C90
This explicit permission is new in C99.

C++

The C++ Standard, like C90, is silent on this subject.

968 The FP_CONTRACT pragma in <math.h> provides a way to disallow contracted expressions.

C90
Support for the FP_CONTRACT pragma is new in C99.

C++

Support for the FP_CONTRACT pragma is new in C99 and not specified in the C++ Standard.

969 Otherwise, whether and how expressions are contracted is implementation-defined.76) contracted
how

implementation-
defined

January 30, 2008 v 1.1

6.5.2 Postfix operators985

C++

The C++ Standard does not give implementations any permission to contract expressions. This does not
mean they cannot contract expressions, but it does mean that there is no special dispensation for potentially
returning different results.

97275) A contracted expression might also omit the raising of floating-point exceptions.footnote
75

C++

The contraction of expressions is not explicitly discussed in the C++ Standard.

97376) This license is specifically intended to allow implementations to exploit fast machine instructions thatfootnote
76 combine multiple C operators.

C90
Such instructions were available in processors that existed before the creation of the C90 Standard and there
were implementations that made use of them. However, this license was not explicitly specified in the C90
Standard.

C++

The C++ Standard contains no such explicit license.

6.5.1 Primary expressions

975
primary-
expression
syntax

primary-expression:
identifier
constant
string-literal
(expression)

C++

The C++ Standard (5.1p1) includes additional syntax that supports functionality not available in C.

Semantics

976An identifier is a primary expression, provided it has been declared as designating an object (in which case itidentifier
is primary ex-
pression if is an lvalue) or a function (in which case it is a function designator).77)

C++

The C++ definition of identifier (5.1p7) includes support for functionality not available in C. The C++ Standard
uses the term identifier functions, not the term function designator. It also defines such identifier functions as
being lvalues (5.2.2p10) but only if their return type is a reference (a type not available in C).

6.5.2 Postfix operators

985
postfix-expression
syntax

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-listopt)
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression --

v 1.1 January 30, 2008

6.5.2.1 Array subscripting 993

(type-name) { initializer-list }
(type-name) { initializer-list , }

argument-expression-list:

assignment-expression
argument-expression-list , assignment-expression

C90
Support for the forms (compound literals):

(type-name) { initializer-list }
(type-name) { initializer-list , }

is new in C99.

C++

Support for the forms (compound literals):

(type-name) { initializer-list }
(type-name) { initializer-list , }

is new in C99 and is not specified in the C++ Standard.

986 77) Thus, an undeclared identifier is a violation of the syntax. footnote
77

C++

The C++ Standard does not explicitly point out this consequence.

6.5.2.1 Array subscripting
Constraints
Semantics

992 If E is an n-dimensional array (n≥2) with dimensions i×j×· · ·×k then E (used as other than an lvalue) is array
n-dimensional

referenceconverted to a pointer to an (n-1)-dimensional array with dimensions j×· · ·×k

C++

Clause 8.3.4p7 uses the term rank to describe i×j×· · ·×k, not dimensions.

993 If the unary * operator is applied to this pointer explicitly, or implicitly as a result of subscripting, the result is
the pointed-to (n - 1)-dimensional array, which itself is converted into a pointer if used as other than an lvalue.

C++

8.3.4p7

January 30, 2008 v 1.1

6.5.2.2 Function calls1000

If the * operator, either explicitly or implicitly as a result of subscripting, is applied to this pointer, the result is
the pointed-to (n− 1)-dimensional array, which itself is immediately converted into a pointer.

While the C++ Standard does not require the result to be used “as other than an lvalue” for it to be converted
to a pointer. This difference does not result in any differences for the constructs available in C.

6.5.2.2 Function calls
Constraints

997The expression that denotes the called function78) shall have type pointer to function returning void or returningfunction call

an object type other than an array type.

C++

5.2.2p3 This type shall be a complete object type, a reference type or the type void.

Source developed using a C++ translator may contain functions returning an array type.

998If the expression that denotes the called function has a type that includes a prototype, the number of argumentsfunction call
arguments agree
with parameters shall agree with the number of parameters.

C++

C++ requires that all function definitions include a prototype.

5.2.2p6 A function can be declared to accept fewer arguments (by declaring default arguments (8.3.6)) or more arguments
(by using the ellipsis, ... 8.3.5) than the number of parameters in the function definition (8.4). [Note: this
implies that, except where the ellipsis (...) is used, a parameter is available for each argument.]

A called function in C++, whose definition uses the syntax specified in standard C, has the same restrictions
placed on it by the C++ Standard as those in C.

999Each argument shall have a type such that its value may be assigned to an object with the unqualified versionargument
type may be
assigned of the type of its corresponding parameter.

C++

The C++ language permits multiple definitions of functions having the same name. The process of selecting
which function to call requires that a list of viable functions be created. Being a viable function requires:

13.3.2p3 . . . , there shall exist for each argument an implicit conversion sequence that converts that argument to the
corresponding parameter . . .

A C source file containing a call that did not meet this criteria would cause a C++ implementation to issue a
diagnostic (probably complaining about there not being a visible function declaration that matched the type
of the call).

Semantics

1000A postfix expression followed by parentheses () containing a possibly empty, comma-separated list ofoperator
() expressions is a function call.

C90
The C90 Standard included the requirement:

v 1.1 January 30, 2008

6.5.2.2 Function calls 1007

If the expression that precedes the parenthesized argument list in a function call consists solely of an identifier,
and if no declaration is visible for this identifier, the identifier is implicitly declared exactly as if, in the innermost
block containing the function call, the declaration

extern int identifier();

appeared.

A C99 implementation will not perform implicit function declarations.

1004 In preparing for the call to a function, the arguments are evaluated, and each parameter is assigned the value function call
preparing forof the corresponding argument.79)

C++

The C++ Standard treats parameters as declarations that are initialized with the argument values:

5.2.2p4When a function is called, each parameter (8.3.5) shall be initialized (8.5, 12.8, 12.1) with its corresponding
argument.

The behavior is different for arguments having a class type:

12.8p1A class object can be copied in two ways, by initialization (12.1, 8.5), including for function argument passing
(5.2.2) and for function value return (6.6.3), and by assignment (5.17).

This difference has no effect if a program is written using only the constructs available in C (structure and
union types are defined by C++ to be class types).

1005 If the expression that denotes the called function has type pointer to function returning an object type, the
function call expression has the same type as that object type, and has the value determined as specified in
6.8.6.4.

C90
A rather embarrassing omission from the original C90 Standard was the specification of the type of a function
call. This oversight was rectified by the response to DR #017q37.

C++

Because C++ allows multiple function definitions having the same name, the wording of the return type is
based on the type of function chosen to be called, not on the type of the expression that calls it.

5.2.2p3The type of the function call expression is the return type of the statically chosen function . . .

1006 Otherwise, the function call has type void.

C++

C++ also supports functions returning reference types. This functionality is not available in C.

1007 If an attempt is made to modify the result of a function call or to access it after the next sequence point, the function result
attempt to modifybehavior is undefined.

C90
This sentence did not appear in the C90 Standard and had to be added to the C99 Standard because of a
change in the definition of the term lvalue. 721 lvalue

January 30, 2008 v 1.1

6.5.2.2 Function calls1015

C++

The C++ definition of lvalue is the same as that given in the C90 Standard, however, it also includes the
wording:

5.2.2p10 A function call is an lvalue if and only if the result type is a reference.

In C++ it is possible to modify an object through a reference type returned as the result of a function call.
Reference types are not available in C.

1008If the expression that denotes the called function has a type that does not include a prototype, the integercalled function
no prototype promotions are performed on each argument, and arguments that have type float are promoted to double.

C++

In C++ all functions must be defined with a type that includes a prototype.
A C source file that contains calls to functions that are declared without prototypes will be ill-formed in C++.

1009These are called the default argument promotions.default argument
promotions

C++

The C++ Standard always requires a function prototype to be in scope at the point of call. However, it also
needs to define default argument promotions (Clause 5.2.2p7) for use with arguments corresponding to the
ellipsis notation.

1012If the function is defined with a type that does not include a prototype, and the types of the arguments afterargument in call
incompatible with
function definition promotion are not compatible with those of the parameters after promotion, the behavior is undefined, except

for the following cases:

C90
The C90 Standard did not include any exceptions.

C++

All functions must be defined with a type that includes a prototype.
A C source file that contains calls to functions that are declared without prototypes will be ill-formed in C++.

101378) Most often, this is the result of converting an identifier that is a function designator.footnote
78

C++

The C++ language provides a mechanism for operators to be overloaded by developer-defined functions,
creating an additional mechanism through which functions may be called. Although this mechanism is
commonly discussed in textbooks, your author suspects that in practice it does not account for many function
calls in C++ source code.

101479) A function may change the values of its parameters, but these changes cannot affect the values of thefootnote
79 arguments.

C++

The C++ reference type provides a call by address mechanism. A change to a parameter declared to have
such a type will immediately modify the value of its corresponding argument.

This C behavior also holds in C++ for all of the types specified by the C Standard.

1015On the other hand, it is possible to pass a pointer to an object, and the function may change the value of the
object pointed to.

v 1.1 January 30, 2008

6.5.2.2 Function calls 1025

C++

This possibility is not explicitly discussed in the C++ Standard, which supports an easier to use mechanism
for modifying arguments, reference types.

1019 If the expression that denotes the called function has a type that does include a prototype, the arguments are function call
prototype visibleimplicitly converted, as if by assignment, to the types of the corresponding parameters, taking the type of each

parameter to be the unqualified version of its declared type.

C90
The wording that specifies the use of the unqualified version of the parameter type was added by the response
to DR #101.

C++

The C++ Standard specifies argument-passing in terms of initialization. For the types available in C, the
effects are the same.

5.2.2p4When a function is called, each parameter (8.3.5) shall be initialized (8.5, 12.8, 12.1) with its corresponding
argument.

1020 The ellipsis notation in a function prototype declarator causes argument type conversion to stop after the last
declared parameter.

C++

There is no concept of starting and stopping, as such, argument conversion in C++.

1022 No other conversions are performed implicitly;

C++

In C++ it is possible for definitions written by a developer to cause implicit conversions. Such conversions
can be applied to function arguments. C source code, given as input to a C++ translator, cannot contain any
such constructs.

1023 in particular, the number and types of arguments are not compared with those of the parameters in a function
definition that does not include a function prototype declarator.

C++

All function definitions must include a function prototype in C++.

1024 If the function is defined with a type that is not compatible with the type (of the expression) pointed to by the function call
not compatible
with definitionexpression that denotes the called function, the behavior is undefined.

C++

In C++ is it possible for there to be multiple definitions of functions having the same name and different types.
The process of selecting which function to call requires that a list of viable functions be created (it is possible
that this selection process will not return any matching function).
It is possible that source developed using a C++ translator may contain pointer-to function conversions that
happen to be permitted in C++, but have undefined behavior in C.

1025 The order of evaluation of the function designator, the actual arguments, and subexpressions within the actual function call
sequence pointarguments is unspecified, but there is a sequence point before the actual call.

January 30, 2008 v 1.1

6.5.2.3 Structure and union members1038

C++

5.2.2p8 All side effects of argument expression evaluations take effect before the function is entered.

While the requirements in the C++ Standard might appear to be a subset of the requirements in the C Standard,
they are effectively equivalent. The C Standard does not require that the evaluation of any other operands,
which may occur in the expression containing the function call, have occurred prior to the call and the C++

Standard does not prohibit them from occurring.

6.5.2.3 Structure and union members
Constraints
Semantics

1034A postfix expression followed by the -> operator and an identifier designates a member of a structure or union
object.

C++

The C++ Standard specifies how the operator can be mapped to the dot (.) form and describes that operator
only.

5.2.5p3 If E1 has the type “pointer to class X,” then the expression E1->E2 is converted to the equivalent form
(*(E1)).E2; the remainder of 5.2.5 will address only the first option (dot)59).

1037One special guarantee is made in order to simplify the use of unions: if a union contains several structuresunion
special guaran-
tee that share a common initial sequence (see below), and if the union object currently contains one of these

structures, it is permitted to inspect the common initial part of any of them anywhere that a declaration of the
complete type of the union is visible.

C90
The wording:

anywhere that a declaration of the complete type of the union is visible.

was added in C99 to handle a situation that was raised too late in the process to be published in a Technical
Report. Another wording change relating to accessing members of union objects is discussed elsewhere.EXAMPLE

member selection
1044

value
stored in union

586

C++

Like C90, the C++ Standard does not include the words “ . . . anywhere that a declaration of the complete
type of the union is visible.”

1038Two structures share a common initial sequence if corresponding members have compatible types (and, forcommon initial
sequence

bit-fields, the same widths) for a sequence of one or more initial members.

C++

3.9p11 If two types T1 and T2 are the same type, then T1 and T2 are layout-compatible types.

9.2p16

v 1.1 January 30, 2008

6.5.2.4 Postfix increment and decrement operators 1044

Two POD-structs share a common initial sequence if corresponding members have layout-compatible types
(and, for bit-fields, the same widths) for a sequence of one or more initial members.

POD is an acronym for Plain Old Data type.
C++ requires that types be the same, while C requires type compatibility. If one member has an enumerated
type and its corresponding member has the compatible integer type, C can treat these members as being part
of a common initial sequence. C++ will not treat these members as being part of a common initial sequence.

1041 80) If &E is a valid pointer expression (where & is the “address-of” operator, which generates a pointer to its footnote
80operand), the expression (&E)->MOS is the same as E.MOS.

C++

The C++ Standard does not make this observation.

1044 EXAMPLE 3 The following is a valid fragment: EXAMPLE
member selection

union {
struct {

int alltypes;
} n;
struct {

int type;
int intnode;

} ni;
struct {

int type;
double doublenode;

} nf;
} u;
u.nf.type = 1;
u.nf.doublenode = 3.14;
/* ... */
if (u.n.alltypes == 1)

if (sin(u.nf.doublenode) == 0.0)
/* ... */

The following is not a valid fragment (because the union type is not visible within function f):

struct t1 { int m; };
struct t2 { int m; };
int f(struct t1 *p1, struct t2 *p2)
{

if (p1->m < 0)
p2->m = -p2->m;

return p1->m;
}
int g()
{

union {
struct t1 s1;
struct t2 s2;

} u;
/* ... */
return f(&u.s1, &u.s2);

}

C90
In C90 the second fragment was considered to contain implementation-defined behavior.

January 30, 2008 v 1.1

6.5.2.4 Postfix increment and decrement operators1052

C++

The behavior of this example is as well defined in C++ as it is in C90.

6.5.2.4 Postfix increment and decrement operators
Constraints

1046The operand of the postfix increment or decrement operator shall have qualified or unqualified real or pointerpostfix operator
constraint type and shall be a modifiable lvalue.

C90
The C90 Standard required the operand to have a scalar type.

C++

D.1p1 The use of an operand of type bool with the postfix ++ operator is deprecated.

Semantics

1048After the result is obtained, the value of the operand is incremented.

C++

5.2.6p1 After the result is noted, the value of the object is modified by adding 1 to it, unless the object is of type bool, in
which case it is set to true. [Note: this use is deprecated, see annex D.]

The special case for operands of type bool also occurs in C, but a chain of reasoning is required to deduce it._Bool
large enough

to store 0 and 1

476

1050See the discussions of additive operators and compound assignment for information on constraints, types,postfix operators
see also and conversions and the effects of operations on pointers.

C++

The C++ Standard provides a reference, but no explicit wording that the conditions described in the cited
clauses also apply to this operator.

5.2.6p1 See also 5.7 and 5.17.

1051The side effect of updating the stored value of the operand shall occur between the previous and the next
sequence point.

C++

The C++ Standard does not explicitly specify this special case of a more general requirement.sequence
points

1052The postfix -- operator is analogous to the postfix ++ operator, except that the value of the operand ispostfix --
analogous to
++ decremented (that is, the value 1 of the appropriate type is subtracted from it).

C++

5.2.6p2

v 1.1 January 30, 2008

6.5.3.2 Address and indirection operators 1086

. . . except that the operand shall not be of type bool.

A C source file containing an instance of the postfix -- operator applied to an operand having type _Bool is
likely to result in a C++ translator issuing a diagnostic.

6.5.2.5 Compound literals

1053 Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

C90
Support for compound literals is new in C99.

C++

Compound literals are new in C99 and are not available in C++.

Constraints
Semantics

6.5.3 Unary operators
6.5.3.1 Prefix increment and decrement operators
Constraints

1081 The operand of the prefix increment or decrement operator shall have qualified or unqualified real or pointer postfix operator
operandtype and shall be a modifiable lvalue.

C++

The use of an operand of type bool with the prefix ++ operator is deprecated (5.3.2p1); there is no corre-
sponding entry in Annex D, but the proposed response to C++ DR #145 inserted one. In the case of the
decrement operator:

5.3.2p1The operand shall not be of type bool.

A C source file containing an instance of the prefix -- operator applied to an operand having type _Bool is
likely to result in a C++ translator issuing a diagnostic.

Semantics

1084 The expression ++E is equivalent to (E+=1).

C++

C++ lists an exception (5.3.2p1) for the case when E has type bool. This is needed because C++ does not
define its boolean type in the same way as C. The behavior of this operator on operands is defined as a special 476 _Bool

large enough
to store 0 and 1

case in C++. The final result is the same as in C.

1085 See the discussions of additive operators and compound assignment for information on constraints, types, prefix operators
see alsoside effects, and conversions and the effects of operations on pointers.

C++

5.3.2p1[Note: see the discussions of addition (5.7) and assignment operators (5.17) for information on conversions.]

There is no mention that the conditions described in these clauses also apply to this operator.

January 30, 2008 v 1.1

6.5.3.2 Address and indirection operators1089

1086The prefix -- operator is analogous to the prefix ++ operator, except that the value of the operand is
decremented.

C++

The prefix -- operator is not analogous to the prefix ++ operator in that its operand may not have type bool.

6.5.3.2 Address and indirection operators
Constraints

1088The operand of the unary & operator shall be either a function designator, the result of a [] or unary * operator,unary &
operand con-
straints or an lvalue that designates an object that is not a bit-field and is not declared with the register storage-class

specifier.

C90
The words:

. . . , the result of a [] or unary * operator,

are new in C99 and were added to cover the following case:

1 int a@lsquare[]10@rsquare[];
2

3 for (int *p = &a@lsquare[]0@rsquare[]; p < &a@lsquare[]10@rsquare[]; p++)
4 /* ... */

where C90 requires the operand to refer to an object. The expression a+10 exists, but does not refer to an
object. In C90 the expression &a[10] is undefined behavior, while C99 defines the behavior.

C++

Like C90 the C++ Standard does not say anything explicit about the result of a [] or unary * operator. The C++

Standard does not explicitly exclude objects declared with the register storage-class specifier appearing as
operands of the unary & operator. In fact, there is wording suggesting that such a usage is permitted:

7.1.1p3 A register specifier has the same semantics as an auto specifier together with a hint to the implementation
that the object so declared will be heavily used. [Note: the hint can be ignored and in most implementations it
will be ignored if the address of the object is taken. —end note]

Source developed using a C++ translator may contain occurrences of the unary & operator applied to an
operand declared with the register storage-class specifier, which will cause a constraint violation if
processed by a C translator.

1 void f(void)
2 {
3 register int a@lsquare[]10@rsquare[]; /* undefined behavior */
4 // well-formed
5

6 &a@lsquare[]1@rsquare[] /* constraint violation */
7 // well-formed
8 ;
9 }

1089The operand of the unary * operator shall have pointer type.unary *
operand has
pointer type

v 1.1 January 30, 2008

6.5.3.2 Address and indirection operators 1093

C++

5.3.1p1The unary * operator performs indirection: the expression to which it is applied shall be a pointer to an object
type, or a pointer to a function type . . .

C++ does not permit the unary * operator to be applied to an operand having a pointer to void type.

1 void *g_ptr;
2

3 void f(void)
4 {
5 &*g_ptr; /* DR #012 */
6 // DR #232
7 }

Semantics

1090 The unary & operator yields the address of its operand. unary &
operator

C90
This sentence is new in C99 and summarizes what the unary & operator does.

C++

Like C90, the C++ Standard specifies a pointer to its operand (5.3.1p1). But later on (5.3.1p2) goes on to say:
“In particular, the address of an object of type “cv T” is “pointer to cv T,” with the same cv-qualifiers.”

1092 If the operand is the result of a unary * operator, neither that operator nor the & operator is evaluated and the &*

result is as if both were omitted, except that the constraints on the operators still apply and the result is not an
lvalue.

C90
The responses to DR #012, DR #076, and DR #106 specified that the above constructs were constraint
violations. However, no C90 implementations known to your author diagnosed occurrences of these
constructs.

C++

This behavior is not specified in C++. Given that either operator could be overloaded by the developer to have
a different meaning, such a specification would be out of place.
At the time of this writing a response to C++ DR #232 is being drafted (a note from the Oct 2003 WG21
meeting says: “We agreed that the approach in the standard seems okay: p = 0; *p; is not inherently an
error. An lvalue-to-rvalue conversion would give it undefined behavior.”).

1 void DR_232(void)
2 {
3 int *loc = 0;
4

5 if (&*loc == 0) /* no dereference of a null pointer, defined behavior */
6 // probably not a dereference of a null pointer.
7 ;
8

9 &*loc = 0; /* not an lvalue in C */
10 // how should an implementation interpret the phrase must not (5.3.1p1)?
11 }

January 30, 2008 v 1.1

6.5.3.3 Unary arithmetic operators1103

1093Similarly, if the operand is the result of a [] operator, neither the & operator nor the unary * that is implied by
the [] is evaluated and the result is as if the & operator were removed and the [] operator were changed to a
+ operator.

C90
This requirement was not explicitly specified in the C90 Standard. It was the subject of a DR #076 that was
closed by adding this wording to the C99 Standard.

C++

This behavior is not specified in C++. Given that either operator could be overloaded by the developer to have
a different meaning, such a specification would be out of place. The response to C++ DR #232 may specify
the behavior for this case.

1095The unary * operator denotes indirection.unary *
indirection

C++

5.3.1p1 The unary * operator performs indirection.

1096If the operand points to a function, the result is a function designator;

C++

The C++ Standard also specifies (5.3.1p1) that this result is an lvalue. This difference is only significant for
reference types, which are not supported by C.

1099If an invalid value has been assigned to the pointer, the behavior of the unary * operator is undefined.84)

C++

The C++ Standard does not explicitly state the behavior for this situation.

6.5.3.3 Unary arithmetic operators
Constraints

1101The operand of the unary + or - operator shall have arithmetic type;

C++

The C++ Standard permits the operand of the unary + operator to have pointer type (5.3.1p6).

1103of the ! operator, scalar type.!
operand type

C++

The C++ Standard does not specify any requirements on the type of the operand of the ! operator.

5.3.1p8 The operand of the logical negation operator ! is implicitly converted to bool (clause 4);

But the behavior is only defined if operands of scalar type are converted to bool:

4.12p1

v 1.1 January 30, 2008

6.5.3.3 Unary arithmetic operators 1117

An rvalue of arithmetic, enumeration, pointer, or pointer to member type can be converted to an rvalue of type
bool.

Semantics

1110 If the promoted type is an unsigned type, the expression ~E is equivalent to the maximum value representable
in that type minus E.

C++

The C++ Standard does not point out this equivalence.

1111 The result of the logical negation operator ! is 0 if the value of its operand compares unequal to 0, 1 if the logical negation
result isvalue of its operand compares equal to 0.

C++

5.3.1p8its value is true if the converted operand is false and false otherwise.

This difference is only visible to the developer in one case. In all other situations the behavior is the same
1112 logical

negation
result typefalse and true will be converted to 0 and 1 as-needed.

1112 The result has type int. logical negation
result type

C++

5.3.1p8The type of the result is bool.

The difference in result type will result in a difference of behavior if the result is the immediate operand of
the sizeof operator. Such usage is rare.

1113 The expression !E is equivalent to (0==E). !
equivalent to

C++

There is no explicit statement of equivalence given in the C++ Standard.

1114 84) Thus, &*E is equivalent to E (even if E is a null pointer), and &(E1[E2]) to ((E1)+(E2)). footnote
84

C90
This equivalence was not supported in C90, as discussed in the response to DR #012, #076, and #106.

C++

At the moment the C++ Standard specifies no such equivalence, explicitly or implicitly. However, this
situation may be changed by the response to DR #232.

1116 If *P is an lvalue and T is the name of an object pointer type, *(T)P is an lvalue that has a type compatible
with that to which T points.

C++

The C++ Standard makes no such observation.

January 30, 2008 v 1.1

6.5.3.4 The sizeof operator1127

1117Among the invalid values for dereferencing a pointer by the unary * operator are a null pointer, an address
inappropriately aligned for the type of object pointed to, and the address of an object after the end of its
lifetime.

C90
The wording in the C90 Standard only dealt with the address of objects having automatic storage duration.

C++

The C++ Standard does not call out a list of possible invalid values that might be dereferenced.

6.5.3.4 The sizeof operator
Constraints

1118The sizeof operator shall not be applied to an expression that has function type or an incomplete type, to thesizeof
constraints parenthesized name of such a type, or to an expression that designates a bit-field member.

C++

The C++ Standard contains a requirement that does not exist in C.

5.3.3p5 Types shall not be defined in a sizeof expression.

A C source file that defines a type within a sizeof expression is likely to cause a C++ translator to issue a
diagnostic. Defining a type within a sizeof expression is rarely seen in C source.

1 int glob = sizeof(enum {E1, E2}); /* does not affect the conformance status of the program */
2 // ill-formed

Semantics

1120The size is determined from the type of the operand.

C++

5.3.3p1 The sizeof operator yields the number of bytes in the object representation of its operand.

1121The result is an integer.

C90
In C90 the result was always an integer constant. The C99 contexts in which the result is not an integer
constant all involve constructs that are new in C99.

C++

Like C90, the C++ Standard specifies that the result is a constant. The cases where the result is not a constant
require the use of types that are not supported by C++.

1122If the type of the operand is a variable length array type, the operand is evaluated;sizeof
operand evalu-
ated C90

Support for variable length array types is new in C99.

v 1.1 January 30, 2008

6.5.4 Cast operators 1134

C++

Variable length array types are new in C99 and are not available in C++.

1127 The value of the result is implementation-defined, and its type (an unsigned integer type) is size_t, defined in sizeof
result type

<stddef.h> (and other headers).

C++

5.3.3p1. . . ; the result of sizeof applied to any other fundamental type (3.9.1) is implementation-defined.

The C++ Standard does not explicitly specify any behavior when the operand of sizeof has a derived type.
A C++ implementation need not document how the result of the sizeof operator applied to a derived type is
calculated.

1130 EXAMPLE 3 In this example, the size of a variable length array is computed and returned from a function:

#include <stddef.h>

size_t fsize3(int n)
{

char b[n+3]; // variable length array
return sizeof b; // execution time sizeof

}

int main()
{

size_t size;
size = fsize3(10); // fsize3 returns 13
return 0;

}

C90
This example, and support for variable length arrays, is new in C99.

1131 85) When applied to a parameter declared to have array or function type, the sizeof operator yields the size footnote
85of the adjusted (pointer) type (see 6.9.1).

C++

This observation is not made in the C++ Standard.

6.5.4 Cast operators

1133
cast-expression

syntax

cast-expression:
unary-expression
(type-name) cast-expression

C++

The C++ Standard uses the terminal name type-id, not type-name.

Constraints

1134 Unless the type name specifies a void type, the type name shall specify qualified or unqualified scalar type cast
scalar or void typeand the operand shall have scalar type.

January 30, 2008 v 1.1

6.5.4 Cast operators1140

C++

There is no such restriction in C++ (which permits the type name to be a class type). However, the C++

Standard contains a requirement that does not exist in C.

5.4p3 Types shall not be defined in casts.

A C source file that defines a type within a cast is likely to cause a C++ translator to issue a diagnostic (this
usage is rare).

1 extern int glob;
2

3 void f(void)
4 {
5 switch ((enum {E1, E2, E3})glob) /* does not affect the conformance status of the program */
6 // ill-formed
7 {
8 case E1: glob+=3;
9 break;

10 /* ... */
11 }
12 }

1135Conversions that involve pointers, other than where permitted by the constraints of 6.5.16.1, shall be specifiedpointer conversion
constraints by means of an explicit cast.

C90
This wording appeared in the Semantics clause in the C90 Standard; it was moved to constraints in C99. This
is not a difference if it is redundant.

C++

The C++ Standard words its specification in terms of assignment:

4p3 An expression e can be implicitly converted to a type T if and only if the declaration “T t=e;” is well-formed,
for some invented temporary variable t (8.5).

Semantics

1137This construction is called a cast.86)cast

C++

The C++ Standard uses the phrase cast notation. There are other ways of expressing a type conversion in C++

(functional notation, or a type conversion operator). The word cast could be said to apply in common usage
to any of these forms (when technically it refers to none of them).

1138A cast that specifies no conversion has no effect on the type or value of an expression.87)

C++

The C++ Standard explicitly permits an expression to be cast to its own type (5.2.11p1), but does not list any
exceptions for such an operation.

114086) A cast does not yield an lvalue.footnote
86

v 1.1 January 30, 2008

6.5.5 Multiplicative operators 1151

C++

5.4p1The result is an lvalue if T is a reference type, otherwise the result is an rvalue.

Reference types are not available in C, so this specification is not a difference in behavior for a conforming C
program.

1141 Thus, a cast to a qualified type has the same effect as a cast to the unqualified version of the type.

C++

Casts that involve qualified types can be a lot more complex in C++ (5.2.11). There is a specific C++ cast
notation for dealing with this form of type conversion, const_cast<T> (where T is some type).

5.2.11p12[Note: some conversions which involve only changes in cv-qualification cannot be done using const_cast. For
instance, conversions between pointers to functions are not covered because such conversions lead to values
whose use causes undefined behavior.

The other forms of conversions involve types not available in C.

1142
footnote

87
87) If the value of the expression is represented with greater precision or range than required by the type
named by the cast (6.3.1.8), then the cast specifies a conversion even if the type of the expression is the
same as the named type.

C++

The C++ Standard is silent on this subject.

6.5.5 Multiplicative operators

1143
multiplicative-

expression
syntax

multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

C++

In C++ there are two operators (pointer-to-member operators, .* and ->*) that form an additional precedence
level between cast-expression and multiplicative-expression. The nonterminal name for such
expressions is pm-expression, which appears in the syntax for multiplicative-expression.

Constraints
Semantics

1151 When integers are divided, the result of the / operator is the algebraic quotient with any fractional part
discarded.88)

C90

When integers are divided and the division is inexact, if both operands are positive the result of the / operator is
the largest integer less than the algebraic quotient and the result of the % operator is positive. If either operand
is negative, whether the result of the / operator is the largest integer less than or equal to the algebraic quotient
or the smallest integer greater than or equal to the algebraic quotient is implementation-defined, as is the sign
of the result of the % operator.

January 30, 2008 v 1.1

6.5.6 Additive operators1159

If either operand is negative, the behavior may differ between C90 and C99, depending on the implementation-
defined behavior of the C90 implementation.

1 #include <stdio.h>
2

3 int main(void)
4 {
5 int x = -1,
6 y = +3;
7

8 if ((x%y > 0) ||
9 ((x+y)%y == x%y))

10 printf("This is a C90 translator behaving differently than C99\n");
11 }

Quoting from the C9X Revision Proposal, WG14/N613, that proposed this change:

WG14/N613 The origin of this practice seems to have been a desire to map C’s division directly to the “natural” behavior of
the target instruction set, whatever it may be, without requiring extra code overhead that might be necessary to
check for special cases and enforce a particular behavior. However, the argument that Fortran programmers are
unpleasantly surprised by this aspect of C and that there would be negligible impact on code efficiency was
accepted by WG14, who agreed to require Fortran-like behavior in C99.

C++

5.6p4 If both operands are nonnegative then the remainder is nonnegative; if not, the sign of the remainder is
implementation-defined74).

Footnote 74 describes what it calls the preferred algorithm and points out that this algorithm follows the rules
by the Fortran Standard and that C99 is also moving in that direction (work on C99 had not been completed
by the time the C++ Standard was published).
The C++ Standard does not list any options for the implementation-defined behavior. The most likely
behaviors are those described by the C90 Standard (see C90/C99 difference above).

6.5.6 Additive operators
Constraints

1154For addition, either both operands shall have arithmetic type, or one operand shall be a pointer to an objectaddition
operand types type and the other shall have integer type.

C++

The C++ Standard specifies that the null pointer constant has an integer type that evaluates to zero (4.10p1).
In C the NULL macro might expand to an expression having a pointer type. The expression NULL+0 is always
a null pointer constant in C++, but it may violate this constraint in C. This difference will only affect C source
developed using a C++ translator and subsequently translated with a C translator that defines the NULL macro
to have a pointer type (occurrences of such an expression are also likely to be very rare).

115788) This is often called “truncation toward zero”.footnote
88

C90
This term was not defined in the C90 Standard because it was not necessarily the behavior, for this operator,
performed by an implementation.

v 1.1 January 30, 2008

6.5.6 Additive operators 1176

C++

Footnote 74 uses the term rounded toward zero.

1159 — both operands are pointers to qualified or unqualified versions of compatible object types; or subtraction
pointer operands

C++

5.7p2— both operands are pointers to cv-qualified or cv-unqualified versions of the same completely defined object
type; or

Requiring the same type means that a C++ translator is likely to issue a diagnostic if an attempt is made to
subtract a pointer to an enumerated type from its compatible integer type (or vice versa). The behavior is
undefined in C if the pointers don’t point at the same object.

1 #include <stddef.h>
2

3 enum e_tag {E1, E2, E3}; /* Assume compatible type is int. */
4 union {
5 enum e_tag m_1@lsquare[]5@rsquare[];
6 int m_2@lsquare[]10@rsquare[];
7 } glob;
8

9 extern enum e_tag *p_e;
10 extern int *p_i;
11

12 void f(void)
13 {
14 ptrdiff_t loc = p_i-p_e; /* does not affect the conformance status of the program */
15 // ill-formed
16 }

The expression NULL-0 is covered by the discussion on operand types for addition. 1154 addition
operand types

Semantics

1172 If the result points one past the last element of the array object, it shall not be used as the operand of a unary one past the end
accessing

* operator that is evaluated.

C++

This requirement is not explicitly specified in the C++ Standard.

1173 When two pointers are subtracted, both shall point to elements of the same array object, or one past the last pointer sub-
traction
point at

same object
element of the array object;

C90
The C90 Standard did not include the wording “or one past the last element of the array object;”. However,
all implementations known to your author handled this case according to the C99 specification. Therefore, it
is not listed as a difference.

1176 If the result is not representable in an object of that type, the behavior is undefined.

C90

January 30, 2008 v 1.1

6.5.8 Relational operators1200

As with any other arithmetic overflow, if the result does not fit in the space provided, the behavior is undefined.

1179EXAMPLE Pointer arithmetic is well defined with pointers to variable length array types.

{
int n = 4, m = 3;
int a[n][m];
int (*p)[m] = a; // p == &a[0]
p += 1; // p == &a[1]
(*p)[2] = 99; // a[1][2] == 99
n = p - a; // n == 1

}

If array a in the above example were declared to be an array of known constant size, and pointer p were
declared to be a pointer to an array of the same known constant size (pointing to a), the results would be the
same.

C90
This example, and support for variable length arrays, is new in C99.

6.5.7 Bitwise shift operators
Constraints
Semantics

1192If E1 has a signed type and nonnegative value, and E1 × 2E2 is representable in the result type, then that is the
resulting value;

C90
This specification of behavior is new in C99; however, it is the behavior that all known C90 implementations
exhibit.

C++

Like the C90 Standard, the C++ Standard says nothing about this case.

1193otherwise, the behavior is undefined.left-shift
undefined

C90
This undefined behavior was not explicitly specified in the C90 Standard.

C++

Like the C90 Standard, the C++ Standard says nothing about this case.

6.5.8 Relational operators
Constraints

1199— both operands have real type;relational
operators
real operands C90

both operands have arithmetic type;

The change in terminology in C99 was necessitated by the introduction of complex types.

v 1.1 January 30, 2008

6.5.8 Relational operators 1208

1200 — both operands are pointers to qualified or unqualified versions of compatible object types; or relational
operators

pointer operandsC++

5.9p2Pointers to objects or functions of the same type (after pointer conversions) can be compared, with a result
defined as follows:

The pointer conversions (4.4) handles differences in type qualification. But the underlying basic types have
to be the same in C++. C only requires that the types be compatible. When one of the pointed-to types is an
enumerated type and the other pointed-to type is the compatible integer type, C permits such operands to
occur in the same relational-expression; C++ does not (see pointer subtraction for an example). 1159 subtraction

pointer operands

1201— both operands are pointers to qualified or unqualified versions of compatible incomplete types. relational
operators

pointer to in-
complete type

C++

C++ classifies incomplete object types that can be completed as object types, so the discussion in the previous 475 object types

C sentence is also applicable here.

Semantics

1203 For the purposes of these operators, a pointer to an object that is not an element of an array behaves the relational
operators

pointer to objectsame as a pointer to the first element of an array of length one with the type of the object as its element type.

C++

This wording appears in 5.7p4, Additive operators, but does not appear in 5.9, Relational operators. This
would seem to be an oversight on the part of the C++ committee, as existing implementations act as if the
requirement was present in the C++ Standard.

1204 When two pointers are compared, the result depends on the relative locations in the address space of the
objects pointed to.

C++

The C++ Standard does not make this observation.

1205 If two pointers to object or incomplete types both point to the same object, or both point one past the last
element of the same array object, they compare equal.

C++

This requirement can be deduced from:

5.9p2— If two pointers p and q of the same type point to the same object or function, or both point one past the end
of the same array, or are both null, then p<=q and p>=q both yield true and p<q and p>q both yield false.

1206 If the objects pointed to are members of the same aggregate object, pointers to structure members declared structure
members
later com-
pare later

array elements
later com-
pare later

later compare greater than pointers to members declared earlier in the structure, and pointers to array
elements with larger subscript values compare greater than pointers to elements of the same array with lower
subscript values.

C++

This requirement also applies in C++ (5.9p2). If the declaration of two pointed-to members are separated by
an access-specifier label (a construct not available in C), the result of the comparison is unspecified.

January 30, 2008 v 1.1

6.5.9 Equality operators1213

1208If the expression P points to an element of an array object and the expression Q points to the last element of
the same array object, the pointer expression Q+1 compares greater than P.

C90
The C90 Standard contains the additional words, after those above:

even though Q+1 does not point to an element of the array object.

1209In all other cases, the behavior is undefined.relational pointer
comparison
undefined if not
same object

C90
If the objects pointed to are not members of the same aggregate or union object, the result is undefined with
the following exception.

C++

5.9p2 — Other pointer comparisons are unspecified.

Source developed using a C++ translator may contain pointer comparisons that would cause undefined
behavior if processed by a C translator.

1210Each of the operators < (less than), > (greater than), <= (less than or equal to), and >= (greater than or equalrelational
operators
result value to) shall yield 1 if the specified relation is true and 0 if it is false.90)

C++

5.9p1 The operators < (less than), > (greater than), <= (less than or equal to), and >= (greater than or equal to) all
yield false or true.

This difference is only visible to the developer in one case, the result type. In all other situations the behavior
relational
operators

result type

1211

is the same; false and true will be converted to 0 and 1 as-needed.

1211The result has type int.relational
operators
result type C++

5.9p1 The type of the result is bool.

The difference in result type will result in a difference of behavior if the result is the immediate operand of
the sizeof operator. Such usage is rare.

6.5.9 Equality operators
Constraints

1213One of the following shall hold:equality operators
constraints

C++

5.10p1

v 1.1 January 30, 2008

6.5.9 Equality operators 1220

The == (equal to) and the != (not equal to) operators have the same semantic restrictions, conversions, and
result type as the relational operators . . .

See relational operators.
relational
operators
constraints

1215 — both operands are pointers to qualified or unqualified versions of compatible types; equality operators
pointer to com-

patible typesC++

The discussion on the relational operators is applicable here.
1200 relational

operators
pointer operands

1216 — one operand is a pointer to an object or incomplete type and the other is a pointer to a qualified or equality operators
pointer to in-

complete typeunqualified version of void; or

C++

This special case is not called out in the C++ Standard.

1 #include <stdlib.h>
2

3 struct node {
4 int mem;
5 };
6 void *glob;
7

8 void f(void)
9 {

10 /* The following is conforming */
11 // The following is ill-formed
12 struct node *p = malloc(sizeof(struct node));
13

14 /*
15 * There are no C/C++ differences when the object being assigned
16 * has a pointer to void type, 4.10p2.
17 */
18 glob = p;
19 }

See relational operators for additional issues.
relational
operators
constraints

Semantics

1219 Each of the operators yields 1 if the specified relation is true and 0 if it is false. equality operators
true or false

C++

5.10p1The == (equal to) and the != (not equal to) operators have the same . . . truth-value result as the relational
operators.

This difference is only visible to the developer in one case. In all other situations the behavior is the same—
1220 equality

operators
result typefalse and true will be converted to 0 and 1 as needed.

1220 The result has type int. equality operators
result type

C++

5.10p1

January 30, 2008 v 1.1

6.5.9 Equality operators1230

The == (equal to) and the != (not equal to) operators have the same . . . result type as the relational operators.

The difference is also the same as relational operators.
relational
operators

result type

1211

1221For any pair of operands, exactly one of the relations is true.equality operators
exactly one rela-
tion is true C90

This requirement was not explicitly specified in the C90 Standard. It was created, in part, by the response to
DR #172.

C++

This requirement is not explicitly specified in the C++ Standard.

1222If both of the operands have arithmetic type, the usual arithmetic conversions are performed.

C90

Where the operands have types and values suitable for the relational operators, the semantics detailed in 6.3.8
apply.

1223Values of complex types are equal if and only if both their real parts are equal and also their imaginary parts
are equal.

C90
Support for complex types is new in C99.

1224Any two values of arithmetic types from different type domains are equal if and only if the results of their
conversions to the (complex) result type determined by the usual arithmetic conversions are equal.

C90
Support for different type domains, and complex types, is new in C99.

C++

The concept of type domain is new in C99 and is not specified in the C++ Standard, which defines constructors
to handle this case. The conversions performed by these constructions have the same effect as those performedreal type

converted
to complex

700

in C.

122591) The expression a<b<c is not interpreted as in ordinary mathematics.footnote
91

C++

The C++ Standard does not make this observation.

1229Otherwise, at least one operand is a pointer.

C++

The C++ Standard does not break its discussion down into the nonpointer and pointer cases.

1230If one operand is a pointer and the other is a null pointer constant, the null pointer constant is converted to theequality operators
null pointer con-
stant converted type of the pointer.

v 1.1 January 30, 2008

6.5.9 Equality operators 1233

C90

If a null pointer constant is assigned to or compared for equality to a pointer, the constant is converted to a
pointer of that type.

In the case of the expression (void *)0 == 0 both operands are null pointer constants. The C90 wording 748 null pointer
constant

permits the left operand to be converted to the type of the right operand (type int). The C99 wording does
not support this interpretation.

C++

The C++ Standard supports this combination of operands but does not explicitly specify any sequence of
equality
operators
null pointer
constantoperations that take place prior to the comparison.

1231 If one operand is a pointer to an object or incomplete type and the other is a pointer to a qualified or unqualified equality operators
pointer to voidversion of void, the former is converted to the type of the latter.

C++

This conversion is part of the general pointer conversion (4.10) rules in C++. This conversion occurs when
two operands have pointer type.

1233 Two pointers compare equal if and only if both are null pointers, both are pointers to the same object (including pointers
compare equala pointer to an object and a subobject at its beginning) or function, both are pointers to one past the last

element of the same array object, or one is a pointer to one past the end of one array object and the other is a
pointer to the start of a different array object that happens to immediately follow the first array object in the
address space.92)

C90

If two pointers to object or incomplete types are both null pointers, they compare equal. If two pointers to object
or incomplete types compare equal, they both are null pointers, or both point to the same object, or both point
one past the last element of the same array object. If two pointers to function types are both null pointers or
both point to the same function, they compare equal. If two pointers to function types compare equal, either both
are null pointers, or both point to the same function.

The admission that a pointer one past the end of an object and a pointer to the start of a different object
compare equal, if the implementation places the latter immediately following the former in the address space,
is new in C99 (but it does describe the behavior of most C90 implementations).

C++

5.10p1Two pointers of the same type compare equal if and only if they are both null, both point to the same object or
function, or both point one past the end of the same array.

This specification does not include the cases:

• “(including a pointer to an object and a subobject at its beginning)”, which might be deduced from
wording given elsewhere, 761 object

lowest addressed
byte

• “or one is a pointer to one past the end of one array object and the other is a pointer to the start of a
different array object that happens to immediately follow the first array object in the address space”.

January 30, 2008 v 1.1

6.5.13 Logical AND operator1249

The C++ Standard does not prevent an implementation from returning a result of true for the second
case, but it does not require it. However, the response to C++ DR #073 deals with the possibility of
a pointer pointing one past the end of an object comparing equal, in some implementations, to the
address of another object. Wording changes are proposed that acknowledge this possibility.

6.5.10 Bitwise AND operator
Constraints

1235Each of the operands shall have integer type.& binary
operand type

C++

The wording of the specification in the C++ Standard is somewhat informal (the same wording is given for
the bitwise exclusive-OR operator, 5.12p1, and the bitwise inclusive-OR operator, 5.13p1).

5.11p1 The operator applies only to integral or enumeration operands.

Semantics

1236The usual arithmetic conversions are performed on the operands.& binary
operands con-
verted C++

The following conversion is presumably performed on the operands.

5.11p1 The usual arithmetic conversions are performed;

123892) Two objects may be adjacent in memory because they are adjacent elements of a larger array or adjacentfootnote
92 members of a structure with no padding between them, or because the implementation chose to place them

so, even though they are unrelated.

C90
The C90 Standard did not discuss these object layout possibilities.
C++

The C++ Standard does not make these observations.

1239If prior invalid pointer operations (such as accesses outside array bounds) produced undefined behavior,
subsequent comparisons also produce undefined behavior.

C90
The C90 Standard did not discuss this particular case of undefined behavior.

6.5.11 Bitwise exclusive OR operator
Constraints
Semantics

6.5.12 Bitwise inclusive OR operator
Constraints
Semantics

6.5.13 Logical AND operator
Constraints

v 1.1 January 30, 2008

6.5.14 Logical OR operator 1257

1249 Each of the operands shall have scalar type. &&
operand type

C++

5.14p1The operands are both implicitly converted to type bool (clause 4).

Boolean conversions (4.12) covers conversions for all of the scalar types and is equivalent to the C behavior.

Semantics

1250 The && operator shall yield 1 if both of its operands compare unequal to 0; &&
operand com-

pare against 0C++

5.14p1The result is true if both operands are true and false otherwise.

The difference in operand types is not applicable because C++ defines equality to return true or false. The
difference in return value will not cause different behavior because false and true will be converted to 0
and 1 when required.

1252 The result has type int. &&
result type

C++

5.14p2The result is a bool.

The difference in result type will result in a difference of behavior if the result is the immediate operand of
the sizeof operator. Such usage is rare.

1254 there is a sequence point after the evaluation of the first operand. &&
sequence point

C++

5.14p2All side effects of the first expression except for destruction of temporaries (12.2) happen before the second
expression is evaluated.

The possible difference in behavior is the same as for the function-call operator. 1025 function call
sequence point

6.5.14 Logical OR operator
Constraints

1257 Each of the operands shall have scalar type.

C++

5.15p1

January 30, 2008 v 1.1

6.5.15 Conditional operator1264

The operands are both implicitly converted to bool (clause 4).

Boolean conversions (4.12) covers conversions for all of the scalar types and is equivalent to the C behavior.

Semantics

1258The || operator shall yield 1 if either of its operands compare unequal to 0;||
operand com-
pared against
0

C++

5.15p1 It returns true if either of its operands is true, and false otherwise.

The difference in operand types is not applicable because C++ defines equality to return true or false. The
difference in return value will not cause different behavior because false and true will be converted to 0
and 1 when required.

1260The result has type int.||
result type

C++

5.15p2 The result is a bool.

The difference in result type will result in a difference of behavior if the result is the immediate operand of
the sizeof operator. Such usage is rare.

1262there is a sequence point after the evaluation of the first operand.operator ||
sequence point

C++

5.15p2 All side effects of the first expression except for destruction of temporaries (12.2) happen before the second
expression is evaluated.

The differences are discussed elsewhere.&&
sequence point

1254

6.5.15 Conditional operator

1264
conditional-
expression
syntax

conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

C++

5.16 conditional-expression: logical-or-expression logical-or-expression ? expression :
assignment-expression

By supporting an assignment-expression as the third operand, C++ enables the use of a throw-expression;
assignment-
expression

syntax

1288

for instance:

v 1.1 January 30, 2008

6.5.15 Conditional operator 1274

1 z = can_I_deal_with_this() ? 42 : throw X;

Source developed using a C++ translator may contain uses of the conditional operator that are a constraint
violation if processed by a C translator. For instance, the expression x?a:b=c will need to be rewritten as
x?a:(b=c).

Constraints

1265 The first operand shall have scalar type.

C++

5.16p1The first expression is implicitly converted to bool (clause 4).

Boolean conversions (4.12) covers conversions for all of the scalar types and is equivalent to the C behavior.

1270 — both operands are pointers to qualified or unqualified versions of compatible types; conditional
expression

pointer to com-
patible types

C++

5.16p6— The second and third operands have pointer type, or one has pointer type and the other is a null pointer
constant; pointer conversions (4.10) and qualification conversions (4.4) are performed to bring them to their
composite pointer type (5.9).

These conversions will not convert a pointer to an enumerated type to a pointer to integer type.
If one pointed-to type is an enumerated type and the other pointed-to type is the compatible integer type.
C permits such operands to occur in the same conditional-expression. C++ does not. See pointer
subtraction for an example. 1159 subtraction

pointer operands

1272 — one operand is a pointer to an object or incomplete type and the other is a pointer to a qualified or
unqualified version of void.

C++

The C++ Standard does not support implicit conversions from pointer to void to pointers to other types
(4.10p2). Therefore, this combination of operand types is not permitted.

1 int glob;
2 char *pc;
3 void *pv;
4

5 void f(void)
6 {
7 glob ? pc : pv; /* does not affect the conformance status of the program */
8 // ill-formed
9 }

Semantics

1274 there is a sequence point after its evaluation. conditional
operator

sequence pointC++

5.16p1

January 30, 2008 v 1.1

6.5.15 Conditional operator1286

All side effects of the first expression except for destruction of temporaries (12.2) happen before the second or
third expression is evaluated.

The possible difference in behavior is the same as for the function-call operator.function call
sequence point

1025

1278If an attempt is made to modify the result of a conditional operator or to access it after the next sequenceconditional
operator
attempt to modify point, the behavior is undefined.

C90
Wording to explicitly specify this undefined behavior is new in the C99 Standard.

C++

The C++ definition of lvalue is the same as C90, so this wording is not necessary in C++.lvalue 721

1283Furthermore, if both operands are pointers to compatible types or to differently qualified versions of compatible
types, the result type is a pointer to an appropriately qualified version of the composite type;

C90

Furthermore, if both operands are pointers to compatible types or differently qualified versions of a compatible
type, the result has the composite type;

The C90 wording did not specify that the appropriate qualifiers were added after forming the composite type.
In:

1 extern int glob;
2 const enum {E1, E2} *p_ce;
3 volatile int *p_vi;
4

5 void f(void)
6 {
7 glob = *((p_e != p_i) ? p_vi : p_ce);
8 }

the pointed-to type, which is the composite type of the enum and int types, is also qualified with const and
volatile.

1285otherwise, one operand is a pointer to void or a qualified version of void, in which case the result type is a
pointer to an appropriately qualified version of void.

C90

otherwise, one operand is a pointer to void or a qualified version of void, in which case the other operand is
converted to type pointer to void, and the result has that type.

C90 did not add any qualifies to the pointer to void type. In the case of the const qualifier this difference
would not have been noticeable (the resulting pointer type could not have been dereferenced without an
explicit cast to modify the pointed-to object). In the case of the volatile qualifier this difference may result
in values being accessed from registers in C90 while they will be accessed from storage in C99.

C++

The C++ Standard explicitly specifies the behavior for creating a composite pointer type (5.9p2) which is
returned in this case.

v 1.1 January 30, 2008

6.5.16 Assignment operators 1288

1286 93) A conditional expression does not yield an lvalue. footnote
93

C++

5.16p4If the second and third operands are lvalues and have the same type, the result is of that type and is an lvalue.

5.16p5Otherwise, the result is an rvalue.

Source developed using a C++ translator may contain instances where the result of the conditional operator
appears in an rvalue context, which will cause a constraint violation if processed by a C translator.

1 extern int glob;
2

3 void f(void)
4 {
5 short loc_s;
6 int loc_i;
7

8 ((glob < 2) ? loc_i : glob) = 3; /* constraint violation */
9 // conforming

10 ((glob > 2) ? loc_i : loc_s) = 3; // ill-formed
11 }

1287 EXAMPLE The common type that results when the second and third operands are pointers is determined in EXAMPLE
?: common
pointer typetwo independent stages. The appropriate qualifiers, for example, do not depend on whether the two pointers

have compatible types.
Given the declarations

const void *c_vp;
void *vp;
const int *c_ip;
volatile int *v_ip;
int *ip;
const char *c_cp;

the third column in the following table is the common type that is the result of a conditional expression in which
the first two columns are the second and third operands (in either order):

c_vp c_ip const void *
v_ip 0 volatile int *
c_ip v_ip const volatile int *
vp c_cp const void *
ip c_ip const int *
vp ip void *

C90
This example is new in C99.

6.5.16 Assignment operators

January 30, 2008 v 1.1

6.5.16 Assignment operators1291

1288
assignment-
expression
syntax

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of

= *= /= %= += -= <<= >>= &= ^= |=

C++

5.17 assignment-expression: conditional-expression logical-or-expression
assignment-operator assignment-expression throw-expression

For some types, a cast is an lvalue in C++.footnote
85

1131

Constraints

1289An assignment operator shall have a modifiable lvalue as its left operand.assignment
operator
modifiable lvalue C90

The C99 Standard has removed the requirement, that was in C90, which lvalues refer to objects. This haslvalue 721

resulted in the conformance status of the assignment 1=3 changing from a constraint violation to undefined
behavior. The lvalue 1 does not designate an object and is not const-qualified. Therefore it is not ruled outlvalue 721

from being modifiable in C99.

Semantics

1291An assignment expression has the value of the left operand after the assignment, but is not an lvalue.assignment
value of

C++

5.17p1 . . . ; the result is an lvalue.

The C++ DR #222 (which at the time of this writing is at the drafting stage) queries some of the consequences
of the result being an lvalue.
Source developed using a C++ translator may contain assignments that are a constraint violation if processed
by a C translator.

1 extern int glob;
2

3 void f(void)
4 {
5 int x;
6 volatile int y;
7

8 (glob += 5) += 6; /* constraint violation */
9 // current status undefined behavior, object modified

v 1.1 January 30, 2008

6.5.16.1 Simple assignment 1297

10 // twice between sequence points. The response to DR #222
11 // may add a sequence point, making the behavior defined
12

13 x = y = 0; /* equivalent to y=0; x=0; */
14 // equivalent to y=0; x=y;
15 }

1293 The side effect of updating the stored value of the left operand shall occur between the previous and the next assignment
when side ef-

fect occurssequence point.

C++

The C++ Standard does not explicitly state this requirement.

1294 The order of evaluation of the operands is unspecified. assignment
operand eval-

uation orderC++

The C++ Standard does not explicitly make this observation.

1295 If an attempt is made to modify the result of an assignment operator or to access it after the next sequence
point, the behavior is undefined.

C90
This sentence did not appear in the C90 Standard and had to be added to C99 because of a change in the
definition of the term lvalue. 721 lvalue

C++

The C++ definition of lvalue is the same as C90, so this wording is not necessary in C++.

6.5.16.1 Simple assignment
Constraints

1296 One of the following shall hold:94) simple as-
signment

constraintsC++

The C++ Standard does not provide a list of constraints on the operands of any assignment operator (5.17).
Clause 12.8 contains the specification that leads the following difference:

C1.8

The implicitly-declared copy constructor and implicitly-declared copy assignment operator cannot make a copy
of a volatile lvalue. For example, the following is valid in ISO C:

struct X { int i; };
struct X x1, x2;
volatile struct X x3 = {0};
x1 = x3; // invalid C++
x2 = x3; // also invalid C++

Rationale: Several alternatives were debated at length. Changing the parameter to volatile const X& would
greatly complicate the generation of efficient code for class objects. Discussion of providing two alternative
signatures for these implicitly-defined operations raised unanswered concerns about creating ambiguities and
complicating the rules that specify the formation of these operators according to the bases and members.

January 30, 2008 v 1.1

6.5.16.1 Simple assignment1299

1297— the left operand has qualified or unqualified arithmetic type and the right has arithmetic type;

C++

5.17p3 If the left operand is not of class type, the expression is implicitly converted (clause 4) to the cv-unqualified type
of the left operand.

The conversions in clause 4 do not implicitly convert enumerated types to integer types and vice versa.

1 extern int glob;
2

3 enum {E1, E2};
4

5 void f(void)
6 {
7 glob = E1; /* does not affect the conformance status of the program */
8 // ill-formed
9 }

1298— the left operand has a qualified or unqualified version of a structure or union type compatible with the typeassignment
structure types of the right;

C++

Clause 13.5.3 deals with this subject, but does not discuss this particular issue.

1299— both operands are pointers to qualified or unqualified versions of compatible types, and the type pointed topointer
qualified/unqualified
versions by the left has all the qualifiers of the type pointed to by the right;

C++

The C++ wording (5.17p3) requires that an implicit conversion exist.
The C++ requirements (4.4) on which implicit, qualified conversions are permitted are those described in the
Smith paper (discussed elsewhere).

pointer
converting qual-
ified/unqualified

746

The pointer assignments supported by C++ are a superset of those supported by C. Source developed
using a C++ translator may contain constraint violations if processed by a C translator, because it contains
assignments between incompatible pointer types. The following example illustrates differences between the
usages supported by C and C++ when types using two levels of pointer are declared.

1 void Jon_Krom(void)
2 {
3 /*
4 * The issue of what is safe or unsafe is discussed elsewhere.
5 * An example of case 3 is given in the standard.
6 */
7

8 typedef int T; /* for any type T */
9

10 T * * ppa ;
11 T * * ppb ;
12

13 T * const * pcpa ;
14 T * const * pcpb ;
15

16 T const * * cppa ;

v 1.1 January 30, 2008

6.5.16.1 Simple assignment 1302

17 T const * * cppb ;
18

19 T const * const * cpcpa ;
20 T const * const * cpcpb ;
21

22 // Safe Allowed Allowed
23 // or in in
24 // Unsafe C99 C++
25 // --------------------------------
26 ppb = ppa ; // Safe Yes Yes 1
27 pcpb = ppa ; // Safe Yes Yes 2
28 cppb = ppa ; // Unsafe No No 3
29 cpcpb = ppa ; // Safe No Yes 4
30

31 ppb = pcpa ; // Unsafe No No 5
32 pcpb = pcpa ; // Safe Yes Yes 6
33 cppb = pcpa ; // Unsafe No No 7
34 cpcpb = pcpa ; // Safe No Yes 8
35

36 ppb = cppa ; // Unsafe No No 9
37 pcpb = cppa ; // Unsafe No No 10
38 cppb = cppa ; // Safe Yes Yes 11
39 cpcpb = cppa ; // Safe Yes Yes 12
40

41 ppb = cpcpa ; // Unsafe No No 13
42 pcpb = cpcpa ; // Unsafe No No 14
43 cppb = cpcpa ; // Unsafe No No 15
44 cpcpb = cpcpa ; // Safe Yes Yes 16
45 }

1300 — one operand is a pointer to an object or incomplete type and the other is a pointer to a qualified or
unqualified version of void, and the type pointed to by the left has all the qualifiers of the type pointed to by
the right;

C++

5.17p3If the left operand is not of class type, the expression is implicitly converted (clause 4) to the cv-unqualified type
of the left operand.

The C++ Standard only supports an implicit conversion when the left operand has a pointer to void type,
4.10p2.

1 char *pc;
2 void *pv;
3

4 void f(void)
5 {
6 pc=pv; /* does not affect the conformance status of the program */
7 // ill-formed
8 }

1302 or— the left operand has type _Bool and the right is a pointer.

C90
Support for the type _Bool is new in C99.

January 30, 2008 v 1.1

6.5.17 Comma operator1315

C++

Support for the type _Bool is new in C99 and is not specified in the C++ Standard. However, the C++ Standard
does specify (4.12p1) that rvalues having pointer type can be converted to an rvalue of type bool.

Semantics

1304If the value being stored in an object is read from another object that overlaps in any way the storage of theassignment
value overlaps
object first object, then the overlap shall be exact and the two objects shall have qualified or unqualified versions of a

compatible type;

C++

The C++ Standard requires (5.18p8) that the objects have the same type. Even though the rvalue may haveobject types 475

the same type as the lvalue (perhaps through the use of an explicit cast), this requirement is worded in terms
of the object type. The C++ Standard is silent on the issue of overlapping objects.

1 enum E {E1, E2};
2 union {
3 int m_1;
4 enum E m_2;
5 } x;
6

7 void f(void)
8 {
9 x.m_1 = (int)x.m_2; /* does not change the conformance status of the program */

10 // not defined?
11 }

130794) The asymmetric appearance of these constraints with respect to type qualifiers is due to the conversionfootnote
94 (specified in 6.3.2.1) that changes lvalues to “the value of the expression” whichand thus removes any type

qualifiers from the type category of the expression that were applied to the type category of the expression
(for example, it removes const but not volatile from the type intvolatile*const).

C++

Even though the result of a C++ assignment operator is an lvalue, the right operand still needs to be converted
to a value (except for reference types, but they are not in C) and the asymmetry also holds in C++.

6.5.16.2 Compound assignment
Constraints

1311For the other operators, each operand shall have arithmetic type consistent with those allowed by the
corresponding binary operator.

C++

5.15p7 In all other cases, E1 shall have arithmetic type.

Those cases where objects may not have some arithmetic type when appearing as operands to operators (i.e.,
floating types with the shift operators) are dealt with using the equivalence argument specified earlier in
5.15p7.

Semantics

6.5.17 Comma operator
Semantics

v 1.1 January 30, 2008

6.6 Constant expressions 1323

1315 there is a sequence point after its evaluation. comma operator
sequence point

C++

5.18p1All side effects (1.9) of the left expression, except for the destruction of temporaries (12.2), are performed before
the evaluation of the right expression.

The discussion on the function-call operator is applicable here. 1025 function call
sequence point

1318 If an attempt is made to modify the result of a comma operator or to access it after the next sequence point,
the behavior is undefined.

C90
This sentence did not appear in the C90 Standard and had to be added to C99 because of a change in the
definition of the term lvalue. 721 lvalue

C++

The C++ definition of lvalue is the same as C90, so this wording is not necessary in C++. 721 lvalue

1320 95) A comma operator does not yield an lvalue. footnote
95

comma operator
lvalueC++

5.18p1. . . ; the result is an lvalue if its right operand is.

1 #include <stdio.h>
2

3 void DR_188(void)
4 {
5 char arr@lsquare[]100@rsquare[];
6

7 if (sizeof(0, arr) == sizeof(char *))
8 printf("A C translator has been used\n");
9 else

10 if (sizeof(0, arr) == sizeof(arr))
11 printf("A C++ translator has been used\n");
12 else
13 printf("Who knows why we got here\n");
14 }
15

16 void f(void)
17 {
18 int loc;
19

20 (2, loc)=3; /* constraint violation */
21 // conforming
22 }

6.6 Constant expressions
Description

January 30, 2008 v 1.1

6.6 Constant expressions1328

1323A constant expression can be evaluated during translation rather than runtime, and accordingly may be used
in any place that a constant may be.

C++

The C++ Standard says nothing about when constant expressions can be evaluated. It suggests (5,19p1) places
where such constant expressions can be used. It has proved possible to write C++ source that require translators
to calculate relatively complicated functions. The following example, from Veldhuizen,[5] implements the
pow library function at translation time.

1 template<int I, int Y>
2 struct ctime_pow
3 {
4 static const int result = X * ctime_pow<X, Y-1>::result;
5 };
6

7 // Base case to terminate recursion
8 template<int I>
9 struct ctime_pow<X, 0>

10 {
11 static const int results =- 1;
12 };
13

14 const int x = ctime_pow<5, 3>::result; // assign five cubed to x

Constraints

1324Constant expressions shall not contain assignment, increment, decrement, function-call, or comma operators,constant ex-
pression
not contain except when they are contained within a subexpression that is not evaluated.96)

C90

. . . they are contained within the operand of a sizeof operator.53)

With the introduction of VLAs in C99 the result of the sizeof operator is no longer always a constant
expression. The generalization of the wording to include any subexpression that is not evaluated meanssizeof

result of

that nonconstant subexpressions can appear as operands to other operators (the logical-AND, logical-OR,
and conditional operators). For instance, 0 || f() can be treated as a constant expression. In C90 this
expression, occurring in a context requiring a constant, would have been a constraint violation.

C++

Like C90, the C++ Standard only permits these operators to occur as the operand of a sizeof operator.
See C90 difference.

1325Each constant expression shall evaluate to a constant that is in the range of representable values for its type.

C++

The C++ Standard does not explicitly specify an equivalent requirement.

Semantics

1327If a floating expression is evaluated in the translation environment, the arithmetic precision and range shall be
at least as great as if the expression were being evaluated in the execution environment.

v 1.1 January 30, 2008

6.6 Constant expressions 1341

C++

This requirement is not explicitly specified in the C++ Standard.

1328 An integer constant expression97) shall have integer type and shall only have operands that are integer con- integer constant
expressionstants, enumeration constants, character constants, sizeof expressions whose results are integer constants,

and floating constants that are the immediate operands of casts.

C++

5.19p1. . . , const variables or static data members of integral or enumeration types initialized with constant expressions
(8.5), . . .

For conforming C programs this additional case does not cause a change of behavior. But if a C++ translator
is being used to develop programs that are intended to be conforming C, there is the possibility that this
construct will be used.

1 const int ten = 10;
2

3 char arr@lsquare[]ten@rsquare[]; /* constraint violation */
4 // does not change the conformance status of the program

1330 More latitude is permitted for constant expressions in initializers.

C++

5.19p2Other expressions are considered constant-expressions only for the purpose of non-local static object initializa-
tion (3.6.2).

1334 96) The operand of a sizeof operator is usually not evaluated (6.5.3.4). footnote
96

C90

The operand of a sizeof operator is not evaluated (6.3.3.4) and thus any operator in 6.3 may be used.

Unless the operand contains a VLA, which is new in C99, it will still not be evaluated.

C++

The operand is never evaluated in C++. This difference was needed in C99 because of the introduction of
variable length array types.

1338 — an address constant for an object type plus or minus an integer constant expression.

C++

The C++ language requires that vendors provide a linker for a variety of reasons; for instance, support for
name mangling.

1341 An address constant is a null pointer, a pointer to an lvalue designating an object of static storage duration, or address constant

a pointer to a function designator;

January 30, 2008 v 1.1

6.7 Declarations1348

C90
The C90 Standard did not explicitly state that the null pointer was an address constant, although all known
implementations treated it as such.

C++

The C++ Standard does not include (5.19p4) a null pointer in the list of possible address constant expressions.
Although a null pointer value is listed as being a constant-expression (5.19p2). This difference in
terminology does not appear to result in any differences.

1342it shall be created explicitly using the unary & operator or an integer constant cast to pointer type, or implicitly
by the use of an expression of array or function type.

C90
Support for creating an address constant by casting an integer constant to a pointer type is new in C99.
However, many C90 implementations supported this usage. It was specified as a future change by the
response to DR #145.

C++

Like C90, the C++ Standard does not specify support for an address constant being created by casting an
integer constant to a pointer type.

1344An implementation may accept other forms of constant expressions.constant ex-
pression
other forms C++

The C++ Standard does not given explicit latitude for an implementation to accept other forms of constant
expression.

1345The semantic rules for the evaluation of a constant expression are the same as for nonconstant expressions.98)constant ex-
pression
semantic rules C++

The C++ Standard does not explicitly state this requirement, in its semantics rules, for the evaluation of a
constant expression.

134798) Thus, in the following initialization,footnote
98

static int i = 2 || 1 / 0;

the expression is a valid integer constant expression with value one.

C++

The C++ Standard does not make this observation.

6.7 Declarations

1348
declaration
syntax

declaration:
declaration-specifiers init-declarator-listopt ;

declaration-specifiers:
storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifiersopt
type-qualifier declaration-specifiersopt
function-specifier declaration-specifiersopt

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

v 1.1 January 30, 2008

6.7 Declarations 1350

init-declarator:
declarator
declarator = initializer

C90

Support for function-specifier is new in C99.

C++

The C++ syntax breaks declarations down into a number of different categories. However, these are not of
consequence to C, since they involve constructs that are not available in C.

The nonterminal type-qualifier is called cv-qualifier in the C++ syntax. It also reduces through
type-specifier, so the C++ abstract syntax tree is different from C. However, sequences of tokens
corresponding to C declarations are accepted by the C++ syntax.

The C++ syntax specifies that declaration-specifiers is optional, which means that a semicolon could
syntactically be interpreted as an empty declaration (it is always an empty statement in C). Other wording
requires that one or the other always be specified. A source file that contains such a construct is not ill-formed
and a diagnostic may not be produced by a translator.

Constraints

1349 A declaration shall declare at least a declarator (other than the parameters of a function or the members of a declaration
shall declare

identifierstructure or union), a tag, or the members of an enumeration.

C90

6.5A declaration shall declare at least a declarator, a tag, or the members of an enumeration.

The response to DR #155 pointed out that the behavior was undefined and that a diagnostic need not be
issued for the examples below (which will cause a C99 implementation to issue a diagnostic).

1 struct { int mbr; }; /* Diagnostic might not appear in C90. */
2 union { int mbr; }; /* Diagnostic might not appear in C90. */

Such a usage is harmless in that it will not have affected the output of a program and can be removed by
simple editing.

1350 If an identifier has no linkage, there shall be no more than one declaration of the identifier (in a declarator or declaration
only one if
no linkagetype specifier) with the same scope and in the same name space, except for tags as specified in 6.7.2.3.

January 30, 2008 v 1.1

6.7 Declarations1353

C++

This requirement is called the one definition rule (3.2) in C++. There is no C++ requirement that a typedefC++
one definition
rule name be unique within a given scope. Indeed 7.1.3p2 gives an explicit example where this is not the case

(provided the redefinition refers to the type to which it already refers).
A program, written using only C constructs, could be acceptable to a conforming C++ implementation, but
not be acceptable to a C implementation.

1 typedef int I;
2 typedef int I; // does not change the conformance status of the program
3 /* constraint violation */
4 typedef I I; // does not change the conformance status of the program
5 /* constraint violation */

1351All declarations in the same scope that refer to the same object or function shall specify compatible types.declarations
refer to same
object
declarations
refer to same
function

C++

3.5p10 After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types specified
by all declarations referring to a given object or function shall be identical, except that declarations for an
array object can specify array types that differ by the presence or absence of a major array bound (8.3.4). A
violation of this rule on type identity does not require a diagnostic.

C++ requires identical types, while C only requires compatible types. A declaration of an object having an
enumerated type and another declaration of the same identifier, using the compatible integer type, meets
the C requirement but not the C++ one. However, a C++ translator is not required to issue a diagnostic if the
declarations are not identical.

1 enum E {E1, E2};
2

3 extern enum E glob_E;
4 extern int glob_E; /* does not change the conformance status of the program */
5 // Undefined behavior, no diagnostic required
6

7 extern long glob_c;
8 extern long double glob_c; /* Constraint violation, issue a diagnostic message */
9 // Not required to issue a diagnostic message

Semantics

1353A definition of an identifier is a declaration for that identifier that:definition
identifier

C++

The C++ wording is phrased the opposite way around to that for C:

3.1p2 A declaration is a definition unless . . .

The C++ Standard does not define the concept of tentative definition, which means that what are duplicatetentative
definition

1849

tentative definitions in C (a permitted usage) are duplicate definitions in C++ (an ill-formed usage).

v 1.1 January 30, 2008

6.7 Declarations 1358

1 int glob; /* a tentative definition */
2 // the definition
3

4 int glob = 5; /* the definition */
5 // duplicate definition

1354— for an object, causes storage to be reserved for that object; object
reserve storage

C++

The C++ Standard does not specify what declarations are definitions, but rather what declarations are not
definitions:

3.1p2. . . , it contains the extern specifier (7.1.1) or a linkage-specification24) (7.5) and neither an initializer nor
a function-body, . . .

7p6An object declaration, however, is also a definition unless it contains the extern specifier and has no initializer
(3.1).

1355 — for a function, includes the function body;99)

C++

The C++ Standard does not specify what declarations are definitions, but rather what declarations are not
definitions:

3.1p2A declaration is a definition unless it declares a function without specifying the function’s body (8.4), . . .

1356 — for an enumeration constant or typedef name, is the (only) declaration of the identifier.

C90
The C90 Standard did not specify that the declaration of these kinds of identifiers was also a definition,
although wording in other parts of the document treated them as such. The C99 document corrected this
defect (no formal DR exists). All existing C90 implementations known to your author treat these identifiers
as definitions; consequently, no difference is specified here.

C++

3.1p2A declaration is a definition unless . . . , or it is a typedef declaration (7.1.3), . . .

A typedef name is not considered to be a definition in C++. However, this difference does not cause any C
compatibility consequences. Enumerations constants are not explicitly excluded in the unless list. They are
thus definitions.

1357 The declaration specifiers consist of a sequence of specifiers that indicate the linkage, storage duration, and declaration
specifierspart of the type of the entities that the declarators denote.

January 30, 2008 v 1.1

6.7.1 Storage-class specifiers1365

C++

The C++ Standard does not make this observation.

1358The init-declarator-list is a comma-separated sequence of declarators, each of which may have additionaldeclarator
list of type information, or an initializer, or both.

C++

The C++ Standard does not make this observation.

1361If an identifier for an object is declared with no linkage, the type for the object shall be complete by the end ofobject
type complete
by end its declarator, or by the end of its init-declarator if it has an initializer;

C++

3.1p6 A program is ill-formed if the definition of any object gives the object an incomplete type (3.9).

The C++ wording covers all of the cases covered by the C specification above.
A violation of this requirement must be diagnosed by a conforming C++ translator. There is no such
requirement on a C translator. However, it is very unlikely that a C implementation will not issue a diagnostic
in this case (perhaps because of some extension being available).

1362in the case of function arguments parameters (including in prototypes), it is the adjusted type (see 6.7.5.3)
that is required to be complete.

C90
This wording was added to the C99 Standard to clarify possible ambiguities in the order in which requirements,
in the standard, were performed on parameters that were part of a function declaration; for instance, int
f(int a[]);.

C++

The nearest the C++ Standard comes to specifying such a rule is:

5.2.2p4 When a function is called, the parameters that have object type shall have completely-defined object type. [Note:
this still allows a parameter to be a pointer or reference to an incomplete class type. However, it prevents a
passed-by-value parameter to have an incomplete class type.]

6.7.1 Storage-class specifiers

1364
storage-
class specifier
syntax

storage-class-specifier:
typedef
extern
static
auto
register

C++

The C++ Standard classifies typedef (7.1p1) as a decl-specifier, not a storage-class-specifier
(which also includes mutable, a C++ specific keyword).

Constraints

v 1.1 January 30, 2008

6.7.1 Storage-class specifiers 1376

1365 At most, one storage-class specifier may be given in the declaration specifiers in a declaration.100)

C++

While the C++ Standard (7.1.1p1) contains the same requirement, it does not include typedef in the list
of storage-class-specifiers. There is no wording in the C++ limiting the number of instances of the
typedef decl-specifier in a declaration.
Source developed using a C++ translator may contain more than one occurrence of the typedef decl-specifier
in a declaration.

Semantics

1366 The typedef specifier is called a “storage-class specifier” for syntactic convenience only;

C++

It is called a decl-specifier in the C++ Standard (7.1p1).

1369 A declaration of an identifier for an object with storage-class specifier register suggests that access to the register
storage-classobject be as fast as possible.

C++

7.1.1p3A register specifier has the same semantics as an auto specifier together with a hint to the implementation
that the object so declared will be heavily used.

Translator implementors are likely to assume that the reason a developer provides this hint is that they are
expecting the translator to make use of it to improve the performance of the generated machine code. The
C++ hint does not specify implementation details. The differing interpretations given, by the two standards,
for hints provides to translators is not likely to be significant. The majority of modern translators ignore the
hint and do what they think is best.

1370 The extent to which such suggestions are effective is implementation-defined.101) register
extent effective

C++

The C++ Standard gives no status to a translator’s implementation of this hint (suggestion). A C++ translator
is not required to document its handling of the register storage-class specifier and often a developer is no
less wiser than if it is documented.

1374 However, whether or not addressable storage is actually used, the address of any part of an object declared
with storage-class specifier register cannot be computed, either explicitly (by use of the unary & operator as
discussed in 6.5.3.2) or implicitly (by converting an array name to a pointer as discussed in 6.3.2.1).

C++

This requirement does not apply in C++.
1088 unary &

operand con-
straints

1375 Thus, the only operator that can be applied to an array declared with storage-class specifier register is
sizeof.

C++

This observation is not true in C++.
1088 unary &

operand con-
straints

1376 If an aggregate or union object is declared with a storage-class specifier other than typedef, the properties
resulting from the storage-class specifier, except with respect to linkage, also apply to the members of the
object, and so on recursively for any aggregate or union member objects.

January 30, 2008 v 1.1

6.7.2 Type specifiers1382

C90
This wording did not appear in the C90 Standard and was added by the response to DR #017q6.

C++

The C++ Standard does not explicitly specify the behavior in this case.

6.7.2 Type specifiers

1378
type specifier
syntax

type-specifier:
void
char
short
int
long
float
double
signed
unsigned
_Bool
_Complex
_Imaginary
struct-or-union-specifier
enum-specifier
typedef-name

C90
Support for the type-specifiers _Bool, _Complex, and _Imaginary is new in C99.

C++

The nonterminal for these terminals is called simple-type-specifier in C++ (7.1.5.2p1). The C++ Standard
does contain a nonterminal called type-specifier. It is used in a higher-level production (7.1.5p1) that
includes cv-qualifier.
The C++ Standard includes wchar_t and bool (the identifier bool is defined as a macro in the header
stdbool.h in C) as type-specifiers (they are keywords in C++). The C++ Standard does not include
_Bool, _Complex and _Imaginary, either as keywords or type specifiers.

Constraints

1379At least one type specifier shall be given in the declaration specifiers in each declaration, and in the specifier-declaration
at least one type
specifier qualifier list in each struct declaration and type name.

C90
This requirement is new in C99.
In C90 an omitted type-specifier implied the type specifier int. Translating a source file that contains
such a declaration will cause a diagnostic to be issued and are no longer considered conforming programs.

C++

7.1.5p2 At least one type-specifier that is not a cv-qualifier is required in a declaration unless it declares a
constructor, destructor or conversion function.80)

Although the terms used have different definitions in C/C++, the result is the same.

v 1.1 January 30, 2008

6.7.2 Type specifiers 1382

1382
type specifiers

possible sets of

--~ void

--~ char
--~ signed char
--~ unsigned char
--~ short, signed short, short int, or signed short int
--~ unsigned short, or unsigned short int
--~ int, signed, or signed int
--~ unsigned, or unsigned int
--~ long, signed long, long int, or signed long int
--~ unsigned long, or unsigned long int
--~ long long, signed long long, long long int, or signed long long int
--~ unsigned long long, or unsigned long long int
--~ float
--~ double
--~ long double
--~ _Bool
--~ float _Complex
--~ double _Complex
--~ long double _Complex
--~float _Imaginary
--~double _Imaginary
--~long double _Imaginary
--~ struct or union specifier
--~ enum specifier
--~ typedef name

C90
Support for the following is new in C99:
— long long, signed long long, long long int, or signed long long int

— unsigned long long, or unsigned long long int
— _Bool
— float _Complex
— double _Complex
— long double _Complex

Support for the no type specifiers set, in the int, signed, signed int list has been removed in C99.

1 extern x; /* strictly conforming C90 */
2 /* constraint violation C99 */
3 const y; /* strictly conforming C90 */
4 /* constraint violation C99 */
5 z; /* strictly conforming C90 */
6 /* constraint violation C99 */
7 f(); /* strictly conforming C90 */
8 /* constraint violation C99 */

January 30, 2008 v 1.1

6.7.2.1 Structure and union specifiers1390

C++

The list of combinations, given above as being new in C99 are not supported by C++.
Like C99, the C++ Standard does not require a translator to provide an implicit function declaration

returning int (footnote 80) being supplied for a missing type specifier.

1383The type specifiers _Complex and _Imaginary shall not be used if the implementation does not provide those
complex types.102)

C90
Support for this type specifier is new in C99.

C++

Support for these type specifiers is new in C99 and are not specified as such in the C++ Standard. The
header <complex> defines template classes and associated operations whose behavior provides the same
functionality as that provided, in C, for objects declared to have type _Complex. There are no equivalent
definitions for _Imaginary.

Semantics

1387Each of the comma-separated sets designates the same type, except that for bit-fields, it is implementation-bit-field
int defined whether the specifier int designates the same type as signed int or the same type as unsigned

int.

C90

Each of the above comma-separated sets designates the same type, except that for bit-fields, the type signed
int (or signed) may differ from int (or no type specifiers).

C++

Rather than giving a set of possibilities, the C++ Standard lists each combination of specifiers and its associated
type (Table 7).

1388
footnote
102

102) 101)Implementations are not required to provide imaginary types. Freestanding implementations are not
required to provide complex types.

C90
Support for complex types is new in C99.

C++

There is no specification for imaginary types (in the <complex> header or otherwise) in the C++ Standard.

6.7.2.1 Structure and union specifiers

1390
struct/union
syntax

struct-or-union-specifier:
struct-or-union identifieropt { struct-declaration-list }
struct-or-union identifier

struct-or-union:
struct
union

struct-declaration-list:

v 1.1 January 30, 2008

6.7.2.1 Structure and union specifiers 1391

struct-declaration
struct-declaration-list struct-declaration

struct-declaration:

specifier-qualifier-list struct-declarator-list ;
specifier-qualifier-list:

type-specifier specifier-qualifier-listopt
type-qualifier specifier-qualifier-listopt

struct-declarator-list:
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator:
declarator
declaratoropt : constant-expression

C++

The C++ Standard uses the general term class to refer to these constructs. This usage is also reflected in
naming of the nonterminals in the C++ syntax. The production struct-or-union is known as class-key
in C++ and also includes the keyword class. The form that omits the brace enclosed list of members is
known as an elaborated-type-specifier (7.1.5.3) in C++.

Constraints

1391 A structure or union shall not contain a member with incomplete or function type (hence, a structure shall not member
not typescontain an instance of itself, but may contain a pointer to an instance of itself), except that the last member of

a structure with more than one named member may have incomplete array type;

C90
Support for the exception on the last named member is new in C99.

C++

It is a design feature of C++ that class types can contain incomplete and function types. Source containing
instances of such constructs is making use of significant features of C++ and there is unlikely to be any
expectation of being able to successfully process it using a C translator.
The exception on the last named member is new in C99 and this usage is not supported in the C++ Standard.

The following describes a restriction in C++ that does not apply in C.
annex C.1.7p3

Change: In C++, a typedef name may not be redefined in a class declaration after being used in the declaration

Example:

typedef int I;
struct S {

I i;
int I; // valid C, invalid C++

};

January 30, 2008 v 1.1

6.7.2.1 Structure and union specifiers1395

Rationale: When classes become complicated, allowing such a redefinition after the type has been used can
create confusion for C++ programmers as to what the meaning of ’I’ really is.

1393The expression that specifies the width of a bit-field shall be an integer constant expression that has abit-field
maximum width nonnegative value that shall not exceed the numberwidth of bits in an object of the type that iswould be

specified ifwere the colon and expression are omitted.

C90
The C90 wording ended with “ . . . of bits in an ordinary object of compatible type.”, which begs the question
of whether bit-fields are variants of integer types or are separate types.

C++

The C++ issues are discussed elsewhere.bit-field
value is m bits

575

1394If the value is zero, the declaration shall have no declarator.

C++

9.6p2 Only when declaring an unnamed bit-field may the constant-expression be a value equal to zero.

Source developed using a C++ translator may contain a declaration of a zero width bit-field that include a
declarator, which will generate a constraint violation if processed by a C translator.

1 struct {
2 int mem_1;
3 unsigned int mem_2:0; // no diagnostic required
4 /* constraint violation, diagnostic required */
5 } obj;

There is an open C++ DR (#057) concerning the lack of a prohibition against declarations of the form:

1 union {int : 0;} x;

1395A bit-field shall have a type that is a qualified or unqualified version of _Bool, signed int, unsigned int, orbit-field
shall have type some other implementation-defined type.

C90
The following wording appeared in a semantics clause in C90, not a constraint clause.

A bit-field shall have a type that is a qualified or unqualified version of one of int, unsigned int, or signed
int.

Programs that used other types in the declaration of a bit-field exhibited undefined behavior in C90. Such
programs exhibit implementation-defined behavior in C99.

C++

9.6p3

v 1.1 January 30, 2008

6.7.2.1 Structure and union specifiers 1410

A bit-field shall have integral or enumeration type (3.9.1).

Source developed using a C++ translator may contain bit-fields declared using types that are a constraint
violation if processed by a C translator.

1 enum E_TAG {a, b};
2

3 struct {
4 char m_1 : 3;
5 short m_2 : 5;
6 long m_3 : 7;
7 enum E_TAG m_4 : 9;
8 } glob;

Semantics

1396 As discussed in 6.2.5, a structure is a type consisting of a sequence of members, whose storage is allocated
in an ordered sequence, and a union is a type consisting of a sequence of members whose storage overlap.

C++

This requirement can be deduced from 9.2p12 and 9.5p1.

1397 Structure and union specifiers have the same form.

C++

The C++ Standard does not make this observation.

1401 If the struct-declaration-list contains no named members, the behavior is undefined.

C++

9p1An object of a class consists of a (possibly empty) sequence of members and base class objects.

Source developed using a C++ translator may contain class types having no members. This usage will result
in undefined behavior when processed by a C translator.

1403 A member of a structure or union may have any object type other than a variably modified type.103) struct member
type

C90
Support for variably modified types is new in C99.

C++

Support for variably modified types is new in C99 and they are not specified in the C++ Standard.

1407 A bit-field is interpreted as a signed or unsigned integer type consisting of the specified number of bits.105) bit-field
interpreted as

C++

The C++ Standard does not specify (9.6p1) that the specified number of bits is used for the value representation.

1408 If the value 0 or 1 is stored into a nonzero-width bit-field of type _Bool, the value of the bit-field shall compare
equal to the value stored.

January 30, 2008 v 1.1

6.7.2.1 Structure and union specifiers1424

C90
Support for the type _Bool is new in C99.

1410If enough space remains, a bit-field that immediately follows another bit-field in a structure shall be packedbit-field
packed into into adjacent bits of the same unit.

C++

This requirement is not specified in the C++ Standard.

9.6p1 Allocation of bit-fields within a class object is implementation-defined.

1413The alignment of the addressable storage unit is unspecified.alignment
addressable
storage unit C++

The wording in the C++ Standard refers to the bit-field, not the addressable allocation unit in which it resides.
Does this wording refer to the alignment within the addressable allocation unit?

9.6p1 Alignment of bit-fields is implementation-defined. Bit-fields are packed into some addressable allocation unit.

1416103) A structure or union can not contain a member with a variably modified type because member namesfootnote
103 are not ordinary identifiers as defined in 6.2.3.

C90
Support for variably modified types is new in C99.

C++

Variably modified types are new in C99 and are not available in C++.

1419105) As specified in 6.7.2 above, if the actual type specifier used is int or a typedef-name defined as int,footnote
105 then it is implementation-defined whether the bit-field is signed or unsigned.

C90
This footnote is new in C99.

1421Each non-bit-field member of a structure or union object is aligned in an implementation-defined mannermember
alignment appropriate to its type.

C++

The C++ Standard specifies (3.9p5) that the alignment of all object types is implementation-defined.

1422Within a structure object, the non-bit-field members and the units in which bit-fields reside have addressesmember
address increas-
ing that increase in the order in which they are declared.

C++

The C++ Standard does not say anything explicit about bit-fields (9.2p12).

1424There may be unnamed padding within a structure object, but not at its beginning.structure
unnamed padding

v 1.1 January 30, 2008

6.7.2.1 Structure and union specifiers 1430

C90

There may therefore be unnamed padding within a structure object, but not at its beginning, as necessary to
achieve the appropriate alignment.

C++

This commentary applies to POD-struct types (9.2p17) in C++. Such types correspond to the structure types
available in C.

1427 A pointer to a union object, suitably converted, points to each of its members (or if a member is a bit-field, union
members start
same addressthen to the unit in which it resides), and vice versa.

C++

This requirement can be deduced from:

9.5p1Each data member is allocated as if it were the sole member of a struct.

1428 There may be unnamed padding at the end of a structure or union. structure
trailing padding

C++

The only time this possibility is mentioned in the C++ Standard is under the sizeof operator:

5.3.3p2When applied to a class, the result is the number of bytes in an object of that class including any padding
required for placing objects of that type in an array.

1429 As a special case, the last element of a structure with more than one named member may have an incomplete
array type;

C90
The issues involved in making use of the struct hack were raised in DR #051. The response pointed out
declaring the member to be an array containing fewer elements and then allocating storage extra storage for
additional elements was not strictly conforming. However, declaring the array to have a large number of
elements and allocating storage for fewer elements was strictly conforming.

1 #include <stdlib.h>
2 #define HUGE_ARR 10000 /* Largest desired array. */
3

4 struct A {
5 char x@lsquare[]HUGE_ARR@rsquare[];
6 };
7

8 int main(void)
9 {

10 struct A *p = (struct A *)malloc(sizeof(struct A)
11 - HUGE_ARR + 100); /* Want x@lsquare[]100@rsquare[] this time. */
12 p->x@lsquare[]5@rsquare[] = ’?’; /* Is strictly conforming. */
13 return 0;
14 }

Support for the last member having an incomplete array type is new in C99.

January 30, 2008 v 1.1

6.7.2.2 Enumeration specifiers1441

C++

Support for the last member having an incomplete array type is new in C99 and is not available in C++.

1430this is called a flexible array member.flexible array
member

C++

There is no equivalent construct in C++.

6.7.2.2 Enumeration specifiers

1439
enumera-
tion specifier
syntax

enum-specifier:
enum identifieropt { enumerator-list }
enum identifieropt { enumerator-list , }
enum identifier

enumerator-list:
enumerator
enumerator-list , enumerator

enumerator:
enumeration-constant
enumeration-constant = constant-expression

C90
Support for a trailing comma at the end of an enumerator-list is new in C99.

C++

The form that omits the brace enclosed list of members is known as an elaborated type specifier, 7.1.5.3, in
C++.
The C++ syntax, 7.2p1, does not permit a trailing comma.

Constraints

1440The expression that defines the value of an enumeration constant shall be an integer constant expression thatenumera-
tion constant
representable in
int

has a value representable as an int.

C++

7.2p1 The constant-expression shall be of integral or enumeration type.

7.2p4 If an initializer is specified for an enumerator, the initializing value has the same type as the expression.

Source developed using a C++ translator may contain enumeration initialization values that would be a
constraint violation if processed by a C translator.

1 #include <limits.h>
2

3 enum { umax_int = UINT_MAX}; /* constraint violation */
4 // has type unsigned int

Semantics

v 1.1 January 30, 2008

6.7.2.2 Enumeration specifiers 1447

1441 The identifiers in an enumerator list are declared as constants that have type int and may appear wherever enumerators
type intsuch are permitted.107)

C++

7.2p4Following the closing brace of an enum-specifier, each enumerator has the type of its enumeration. Prior to
the closing brace, the type of each enumerator is the type of its initializing value.

In C the type of an enumeration constant is always int, independently of the integer type that is compatible
with its enumeration type.

1 #include <limits.h>
2

3 int might_be_cpp_translator(void)
4 {
5 enum { a = -1, b = UINT_MAX }; // each enumerator fits in int or unsigned int
6

7 return (sizeof(a) != sizeof(int));
8 }
9

10 void CPP_DR_172_OPEN(void) // Open C++ DR
11 {
12 enum { zero };
13

14 if (-1 < zero) /* always true */
15 // might be false (because zero has an unsigned type)
16 ;
17 }

1445 (The use of enumerators with = may produce enumeration constants with values that duplicate other values in
the same enumeration.)

C++

The C++ Standard does not explicitly mention this possibility, although it does give an example, 7.2p2, of an
enumeration type containing more than one enumeration constant having the same value.

1446 The enumerators of an enumeration are also known as its members.

C++

The C++ Standard does not define this additional terminology for enumerators; probably because it is strongly
associated with a different meaning for members of a class.

7.2p1. . . the associated enumerator the value indicated by the constant-expression.

1447 Each enumerated type shall be compatible with char, a signed integer type, or an unsigned integer type. enumeration
type com-

patible withC90

January 30, 2008 v 1.1

6.7.2.2 Enumeration specifiers1452

Each enumerated type shall be compatible with an integer type;

The integer types include the enumeration types. The change of wording in the C99 Standard removes ainteger types 519

circularity in the specification.

C++

7.2p1 An enumeration is a distinct type (3.9.1) with named constants.

The underlying type of an enumeration may be an integral type that can represent all the enumerator valuesenumeration
constant

type

864

defined in the enumeration (7.2p5). But from the point of view of type compatibility it is a distinct type.enumeration
different type

518

7.2p5 It is implementation-defined which integral type is used as the underlying type for an enumeration except that
the underlying type shall not be larger than int unless the value of an enumerator cannot fit in an int or
unsigned int.

While it is possible that source developed using a C++ translator may select a different integer type than a
particular C translator, there is no effective difference in behavior because different C translators may also
select different types.

1448The choice of type is implementation-defined,108) but shall be capable of representing the values of all the
members of the enumeration.

C90
The requirement that the type be capable of representing the values of all the members of the enumeration
was added by the response to DR #071.

1449The enumerated type is incomplete until after the } that terminates the list of enumerator declarations.enumerated type
incomplete until

C90
The C90 Standard did not specify when an enumerated type was completed.

C++

The C++ Standard neither specifies that the enumerated type is incomplete at any point or that it becomes
complete at any point.

7.2p4 Following the closing brace of an enum-specifier, each enumerator has the type of its enumeration

1450EXAMPLE The following fragment:

enum hue { chartreuse, burgundy, claret=20, winedark };
enum hue col, *cp;
col = claret;
cp = & col;
if (*cp != burgundy)

/* ... */

makes hue the tag of an enumeration, and then declares col as an object that has that type and cp as a
pointer to an object that has that type. The enumerated values are in the set { 0, 1, 20, 21 }.

C++

The equivalent example in the C++ Standard uses the enumeration names red, yellow, green and blue.

v 1.1 January 30, 2008

6.7.2.3 Tags 1456

1452 107) Thus, the identifiers of enumeration constants declared in the same scope shall all be distinct from each footnote
107other and from other identifiers declared in ordinary declarators.

C++

The C++ Standard does not explicitly make this observation.

1453 108) An implementation may delay the choice of which integer type until all enumeration constants have been footnote
108seen.

C90
The C90 Standard did not make this observation about implementation behavior.

C++

This behavior is required of a C++ implementation because:

7.2p5The underlying type of an enumeration is an integral type that can represent all the enumerator values defined
in the enumeration.

6.7.2.3 Tags

1454 A specific type shall have its content defined at most once. type
contents de-

fined onceC90
This requirement was not explicitly specified in the C90 Standard (although it might be inferred from the
wording), but was added by the response to DR #165.

C++

The C++ Standard does not classify the identifiers that occur after the enum, struct, or union keywords as
tags. There is no tag namespace. The identifiers exist in the same namespace as object and typedef identifiers.
This namespace does not support multiple definitions of the same name in the same scope (3.3p4). It is this
C++ requirement that enforces the C one given above.

1455
tag name

same struct,
union or enumWhere two declarations that use the same tag declare the same type, they shall both use the same choice of

struct, union, or enum.

C90
The C90 Standard did not explicitly specify this constraint. While the behavior was therefore undefined, it
is unlikely that the behavior of any existing code will change when processed by a C99 translator (and no
difference is flagged here).

C++

7.1.5.3p3The class-key or enum keyword present in the elaborated-type-specifier shall agree in kind with the
declaration to which the name in the elaborated-type-specifier refers.

1456 A type specifier of the form

enum identifier

without an enumerator list shall only appear after the type it specifies is complete.

January 30, 2008 v 1.1

6.7.2.3 Tags1459

C90
This C99 requirement was not specified in C90, which did not containing any wording that ruled out the
declaration of an incomplete enumerated type (and confirmed by the response to DR #118). Adding this
constraint brings the behavior of enumeration types in line with that for structure and union types.sizeof

constraints
1118

Source code containing declarations of incomplete enumerator types will cause C99 translators to issue a
diagnostic, where a C90 translator was not required to issue one.

1 enum E1 { ec_1 = sizeof (enum E1) }; /* Constraint violation in C99. */
2 enum E2 { ec_2 = sizeof (enum E2 *) }; /* Constraint violation in C99. */

C++

3.3.1p5 [Note: if the elaborated-type-specifier designates an enumeration, the identifier must refer to an
already declared enum-name.

3.4.4p2 If the elaborated-type-specifier refers to an enum-name and this lookup does not find a previously declared
enum-name, the elaborated-type-specifier is ill-formed.

1 enum incomplete_tag *x; /* constraint violation */
2 // undefined behavior
3

4 enum also_incomplete; /* constraint violation */
5 // ill-formed

Semantics

1457All declarations of structure, union, or enumerated types that have the same scope and use the same tagtag declarations
same scope declare the same type.

C90
This requirement was not explicitly specified in the C90 Standard (although it might be inferred from the
wording), but was added by the response to DR #165.

C++

The C++ Standard specifies this behavior for class types (9.1p2). While this behavior is not specified for
enumerated types, it is not possible to have multiple declarations of such types.

1458The type is incomplete109) until the closing brace of the list defining the content, and complete thereafter.tag
incomplete un-
til C++

The C++ Standard specifies this behavior for class types (9.2p2), but is silent on the topic for enumerated
types.

1459Two declarations of structure, union, or enumerated types which are in different scopes or use different tagstag declarations
different scope declare distinct types.

v 1.1 January 30, 2008

6.7.2.3 Tags 1465

C90
The C99 Standard more clearly specifies the intended behavior, which had to be inferred in the C90 Standard. 1457 tag dec-

larationssame scope

C++

The C++ Standard specifies this behavior for class definitions (9.1p1), but does not explicitly specify this
behavior for declarations in different scope.

1460 Each declaration of a structure, union, or enumerated type which does not include a tag declares a distinct struct/union
declaration

no tagtype.

C90
The C90 Standard refers to a “ . . . a new structure, union, or enumerated type,” without specifying the
distinctness of new types. The C99 Standard clarified the meaning.

C++

The C++ Standard specifies that a class definition introduces a new type, 9.1p1 (which by implication is
distinct). However, it does not explicitly specify the status of the type that is created when the tag (a C term)
is omitted in a declaration.

1461 A type specifier of the form

struct-or-union identifieropt { struct-declaration-list }

or

enum identifier { enumerator-list }

or

enum identifier { enumerator-list , }

declares a structure, union, or enumerated type.

C90
Support for the comma terminated form of enumerated type declaration is new in C99.

C++

The C++ Standard does not explicitly specify this semantics (although 9p4 comes close).

1463 If an identifier is provided,110) the type specifier also declares the identifier to be the tag of that type. tag
declare

C++

The term tag is not used in C++, which calls the equivalent construct a class name.

1465 109) An incomplete type may only by used when the size of an object of that type is not needed. footnote
109

size neededC90

It declares a tag that specifies a type that may be used only when the size of an object of the specified type is not
needed.

The above sentence appears in the main body of the standard, not a footnote.
The C99 wording is more general in that it includes all incomplete types. This is not a difference in 475 incomplete

types
behavior because these types are already allowed to occur in the same context as an incomplete structure/union
type.

January 30, 2008 v 1.1

6.7.2.3 Tags1472

C++

The C++ Standard contains no such rule, but enumerates the cases:

3.9p8 [Note: the rules for declarations and expressions describe in which contexts incomplete types are prohibited.]

1467The specification has to be complete before such a function is called or defined.

C90

The specification shall be complete before such a function is called or defined.

The form of wording has been changed from appearing to be a requirement (which would not be normative
in a footnote) to being commentary.

1468110) If there is no identifier, the type can, within the translation unit, only be referred to by the declaration offootnote
110 which it is a part.

C90
This observation was is new in the C90 Standard.

C++

The C++ Standard does not make this observation.

1469Of course, when the declaration is of a typedef name, subsequent declarations can make use of that typedef
name to declare objects having the specified structure, union, or enumerated type.

C90
This observation is new in the C90 Standard.

C++

The C++ Standard does not make this observation.

1470111) A similar construction with enum does not exist.footnote
111

C++

7.1.5.3p1 If an elaborated-type-specifier is the sole constituent of a declaration, the declaration is ill-formed
unless . . .

The C++ Standard does not list enum identifier ; among the list of exceptions and a conforming C++

translator is required to issue a diagnostic for any instances of this usage.
The C++ Standard agrees with this footnote for its second reference in the C90 Standard.

struct-
or-union
identifier

not visible

1471

1471If a type specifier of the formstruct-or-
union identifier
not visible

struct-or-union identifier

occurs other than as part of one of the above forms, and no other declaration of the identifier as a tag is visible,
then it declares an incomplete structure or union type, and declares the identifier as the tag of that type.111

v 1.1 January 30, 2008

6.7.3 Type qualifiers 1479

C++

The C++ Standard does not explicitly discuss this kind of construction/occurrence, although 3.9p6 and 3.9p7
discuss this form of incomplete type.

1472 If a type specifier of the form struct-or-
union identifier

visible
struct-or-union identifier

or

enum identifier

occurs other than as part of one of the above forms, and a declaration of the identifier as a tag is visible, then
it specifies the same type as that other declaration, and does not redeclare the tag.

C++

3.4.4p2 covers this case .E_COMMENT

1474 EXAMPLE 2 To illustrate the use of prior declaration of a tag to specify a pair of mutually referential structures, EXAMPLE
mutually refer-

ential structuresthe declarations

struct s1 { struct s2 *s2p; /* ... */ }; // D1
struct s2 { struct s1 *s1p; /* ... */ }; // D2

specify a pair of structures that contain pointers to each other. Note, however, that if s2 were already declared
as a tag in an enclosing scope, the declaration D1 would refer to it, not to the tag s2 declared in D2. To eliminate
this context sensitivity, the declaration

struct s2;

may be inserted ahead of D1. This declares a new tag s2 in the inner scope; the declaration D2 then completes
the specification of the new type.

C++

This form of declaration would not have the desired affect in C++ because the braces form a scope. The
declaration of s2 would need to be completed within that scope, unless there was a prior visible declaration
it could refer to.

6.7.3 Type qualifiers

1476
type qualifier

syntax

type-qualifier:
const
restrict
volatile

C90
Support for restrict is new in C99.

C++

Support for restrict is new in C99 and is not specified in the C++ Standard.

Constraints
Semantics

1478 The properties associated with qualified types are meaningful only for expressions that are lvalues.112) qualifier
meaningful
for lvalues

January 30, 2008 v 1.1

6.7.3 Type qualifiers1483

C++

The C++ Standard also associates properties of qualified types with rvalues (3.10p3). Such cases apply to
constructs that are C++ specific and not available in C.

1479If the same qualifier appears more than once in the same specifier-qualifier-list, either directly or viaqualifier
appears more
than once one or more typedefs, the behavior is the same as if it appeared only once.

C90
The following occurs within a Constraints clause.

The same type qualifier shall not appear more than once in the same specifier list or qualifier list, either directly
or via one or more typedefs.

Source code containing a declaration with the same qualifier appearing more than once in the same
specifier-qualifier-list will cause a C90 translator to issue a diagnostic.

C++

7.1.5p1 However, redundant cv-qualifiers are prohibited except when introduced through the use of typedefs (7.1.3) or
template type arguments (14.3), in which case the redundant cv-qualifiers are ignored.

The C++ Standard does not define the term prohibited. Applying common usage to this term suggests that it
is to be interpreted as a violation of a diagnosable (because “no diagnostic is required”, 1.4p1, has not been
specified) rule.
The C++ specification is intermediate between that of C90 and C99.

1 const const int cci; /* does not change the conformance status of program */
2 // in violation of a diagnosable rule

1480If an attempt is made to modify an object defined with a const-qualified type through use of an lvalue withconst qualified
attempt modify non-const-qualified type, the behavior is undefined.

C++

3.10p10 An lvalue for an object is necessary in order to modify the object except that an rvalue of class type can also be
used to modify its referent under certain circumstances. [Example: a member function called for an object (9.3)
can modify the object.]

The C++ Standard specifies a different linkage for some objects declared using a const-qualified type.static
internal linkage

425

1483Therefore any expression referring to such an object shall be evaluated strictly according to the rules of the
abstract machine, as described in 5.1.2.3.

C++

There is no equivalent statement in the C++ Standard. But it can be deduced from the following two
paragraphs:

1.9p5

v 1.1 January 30, 2008

6.7.3 Type qualifiers 1493

A conforming implementation executing a well-formed program shall produce the same observable behavior as
one of the possible execution sequences of the corresponding instance of the abstract machine with the same
program and the same input.

1.9p6The observable behavior of the abstract machine is its sequence of reads and writes to volatile data and calls
to library I/O functions.6)

1485 112) The implementation may place a const object that is not volatile in a read-only region of storage. footnote
112

C++

The C++ Standard does not make this observation.

1486 Moreover, the implementation need not allocate storage for such an object if its address is never used.

C++

The C++ Standard does not make this observation. However, given C++ supports zero sized objects, 1.8p5,
there may be other cases where implementations need not allocate storage.

1487 113) This applies to those objects that behave as if they were defined with qualified types, even if they footnote
113are never actually defined as objects in the program (such as an object at a memory-mapped input/output

address).

C++

The C++ Standard does not make this observation.

1488 What constitutes an access to an object that has volatile-qualified type is implementation-defined.

C++

The C++ Standard does not explicitly specify any behavior.

7.1.5.1p8[Note: . . . In general, the semantics of volatile are intended to be the same in C++ as they are in C.]

1489 An object that is accessed through a restrict-qualified pointer has a special association with that pointer.

C90
Support for the restrict qualifier is new in C99.

C++

Support for the restrict qualifier is new in C99 and is not available in C++.

1493 If the specification of a function type includes any type qualifiers, the behavior is undefined.116)

C++

8.3.5p4

January 30, 2008 v 1.1

6.7.3.1 Formal definition of restrict1501

In fact, if at any time in the determination of a type a cv-qualified function type is formed, the program is
ill-formed.

A C++ translator will issue a diagnostic for the appearance of a qualifier in a function type, while a C translator
may silently ignore it.

The C++ Standard allows cv-qualifiers to appear in a function declarator. The syntax is:

8.3.5p1 D1 (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

the cv-qualifier occurs after what C would consider to be the function type.

1494For two qualified types to be compatible, both shall have the identically qualified version of a compatible type;qualified type
to be compatible

C++

The C++ Standard does not define the term compatible type. However, the C++ Standard does define the terms
compati-
ble type

if

631

layout-compatible (3.9p11) and reference-compatible (8.5.3p4). However, cv-qualifiers are not included
in the definition of these terms.

1495the order of type qualifiers within a list of specifiers or qualifiers does not affect the specified type.

C++

The C++ Standard does not specify any ordering dependency on cv-qualifiers within a decl-specifier.

1498114) A volatile declaration may be used to describe an object corresponding to a memory-mapped in-footnote
114 put/output port or an object accessed by an asynchronously interrupting function.

C++

The C++ Standard does not make this observation.

1499Actions on objects so declared shall not be “optimized out” by an implementation or reordered except as
permitted by the rules for evaluating expressions.

C++

7.1.5.1p8 [Note: volatile is a hint to the implementation to avoid aggressive optimization involving the object because
the value of the object might be changed by means undetectable by an implementation. See 1.9 for detailed
semantics. In general, the semantics of volatile are intended to be the same in C++ as they are in C.]

1501116) Both of these can occur through the use of typedefs.footnote
116

C++

The C++ Standard does not make this observation, but it does include the following example:

8.3.5p4 [Example:

typedef void F();
struct S {
const F f; // ill-formed:

// not equivalent to: void f() const;
};

—end example]

v 1.1 January 30, 2008

6.7.4 Function specifiers 1529

6.7.3.1 Formal definition of restrict

1502 Let D be a declaration of an ordinary identifier that provides a means of designating an object P as a restrict
formal definitionrestrict-qualified pointer to type T.

C++

Support for the restrict qualifier is new in C99 and is not available in C++.

6.7.4 Function specifiers

1522
function specifier

syntax

function-specifier:
inline

C90
Support for function-specifier is new in C99.

C++

The C++ Standard also includes, 7.1.2p1, the function-specifiers virtual and explicit.

Constraints

1524 An inline definition of a function with external linkage shall not contain a definition of a modifiable object with inline
static stor-

age durationstatic storage duration, and shall not contain a reference to an identifier with internal linkage.

C++

The C++ Standard does not contain an equivalent prohibition.

7.1.2p4A static local variable in an extern inline function always refers to the same object.

The C++ Standard does not specify any requirements involving a static local variable in a static inline function.
Source developed using a C++ translator may contain inline function definitions that would cause a constraint
violation if processed by a C translator.

1525 In a hosted environment, the inline function specifier shall not appear in a declaration of main.

C++

3.6.1p3A program that declares main to be inline or static is ill-formed.

A program, in a freestanding environment, which includes a declaration of the function main (which need
not exist in such an environment) using the inline function specifier will result in a diagnostic being issued
by a C++ translator.

Semantics

1527 The function specifier may appear more than once; function specifier
appears more

than onceC++

The C++ Standard does not explicitly specify this case (which is supported by its syntax).

1529 Making a function an inline function suggests that calls to the function be as fast as possible.118) inline
suggests
fast calls

January 30, 2008 v 1.1

6.7.4 Function specifiers1532

C++

The C++ Standard gives an implementation technique, not a suggestion of intent:

7.1.2p2 The inline specifier indicates to the implementation that inline substitution of the function body at the point of
call is to be preferred to the usual function call mechanism.

Such wording does not prevent C++ implementors interpreting the function specifier in the C Standard sense
(by, for instance, giving instructions to the hardware memory manager to preferentially keep a function’s
translated machine code in cache).

1530The extent to which such suggestions are effective is implementation-defined.119)

C++

7.1.2p2 An implementation is not required to perform this inline substitution at the point of call;

A C++ implementation is not required to document its behavior.

1531Any function with internal linkage can be an inline function.

C++

The C++ Standard does not explicitly give this permission (any function declaration can include the inline
specifier, but this need not have any effect).

1532For a function with external linkage, the following restrictions apply:

C++

The C++ Standard also has restrictions on inline functions having external linkage. But it does not list them
in one paragraph.
A program built from the following source files is conforming C, but is ill-formed C++ (3.2p5).

File a.c
1 inline int f(void)
2 {
3 return 0+0;
4 }

File b.c
1 int f(void)
2 {
3 return 0;
4 }

Building a program from sources files that have been translated by different C translators requires that
various external interface issues, at the object code level, be compatible. The situation is more complicated
when the translated output comes from both a C and a C++ translator. The following is an example of a
technique that might be used to handle some inline functions (calling functions across source files translated
using C and C++ translators is more complex).

x.h
1 inline int my_abs(int p)
2 {
3 return (p < 0) ? -p : p;
4 }

v 1.1 January 30, 2008

6.7.4 Function specifiers 1542

x.c
1 #include "x.h"
2

3 extern inline int my_abs(int);

The handling of the second declaration of the function my_abs in x.c differs between C and C++. In C the
presence of the extern storage-class specifier causes the definition to serve as a non-inline definition. While
in C++ the presence of this storage-class specifier is redundant. The final result is to satisfy the requirement
for exactly one non-inline definition in C, and to satisfy C++’s one definition rule. 1350 C++

one definition
rule

1533 If a function is declared with an inline function specifier, then it shall also be defined in the same translation
unit.

C++

7.1.2p4An inline function shall be defined in every translation unit in which it is used and shall have exactly the same
definition in every case (3.2).

The C++ Standard only requires the definition to be given if the function is used. A declaration of an inline
function with no associated use does not require a definition. This difference permits a program, written
using only C constructs, to be acceptable to a conforming C++ implementation but not be acceptable to a C
implementation.

1535 Inline substitution is not textual substitution, nor does it create a new function.

C++

The C++ Standard does not make this observation.

1536 Therefore, for example, the expansion of a macro used within the body of the function uses the definition it
had at the point the function body appears, and not where the function is called;

C++

The C++ Standard does not make this observation.

1538 Likewise, the function has a single address, regardless of the number of inline definitions that occur in addition
to the external definition.

C++

7.1.2p4An inline function with external linkage shall have the same address in all translation units.

There is no equivalent statement, in the C++ Standard, for inline functions having internal linkage.

1540 If all of the file scope declarations for a function in a translation unit include the inline function specifier inline definition

without extern, then the definition in that translation unit is an inline definition.

C++

This term, or an equivalent one, is not defined in the C++ Standard.
The C++ Standard supports the appearance of more than one inline function definition, in a program, having a
declaration with extern. This difference permits a program, written using only C constructs, to be acceptable
to a conforming C++ implementation but not be acceptable to a C implementation.

January 30, 2008 v 1.1

6.7.4 Function specifiers1544

1542An inline definition provides an alternative to an external definition, which a translator may use to implement
any call to the function in the same translation unit.

C++

In C++ there are no alternatives, all inline functions are required to be the same.

7.1.2p4 If a function with external linkage is declared inline in one translation unit, it shall be declared inline in all
translation units in which it appears; no diagnostic is required.

A C program may contain a function, with external linkage, that is declared inline in one translation unit but
not be declared inline in another translation unit. When such a program is translated using a C++ translator a
diagnostic may be issued.

1543It is unspecified whether a call to the function uses the inline definition or the external definition.120)

C++

In the C++ Standard there are no alternatives. An inline definition is always available and has the same
definition:

7.1.2p4 An inline function shall be defined in every translation unit in which it is used and shall have exactly the same
definition in every case (3.2).

Rationale Second, the requirement that all definitions of an inline function be “exactly the same” is replaced by the
requirement that the behavior of the program should not depend on whether a call is implemented with a
visible inline definition, or the external definition, of a function. This allows an inline definition to be specialized
for its use within a particular translation unit. For example, the external definition of a library function might
include some argument validation that is not needed for calls made from other functions in the same library.
These extensions do offer some advantages; and programmers who are concerned about compatibility can
simply abide by the stricter C++ rules.

1544EXAMPLE The declaration of an inline function with external linkage can result in either an external definition,EXAMPLE
inline or a definition available for use only within the translation unit. A file scope declaration with extern creates an

external definition. The following example shows an entire translation unit.

inline double fahr(double t)
{

return (9.0 * t) / 5.0 + 32.0;
}

inline double cels(double t)
{

return (5.0 * (t - 32.0)) / 9.0;
}

extern double fahr(double); // creates an external definition

double convert(int is_fahr, double temp)
{

/* A translator may perform inline substitutions */
return is_fahr ? cels(temp) : fahr(temp);

}

v 1.1 January 30, 2008

6.7.5 Declarators 1547

Note that the definition of fahr is an external definition because fahr is also declared with extern, but the
definition of cels is an inline definition. Because cels has external linkage and is referenced, an external
definition has to appear in another translation unit (see 6.9); the inline definition and the external definition are
distinct and either may be used for the call.

C++

The declaration:

1 extern double fahr(double); // creates an external definition

does not create a reference to an external definition in C++.

1546 120) Since an inline definition is distinct from the corresponding external definition and from any other footnote
120corresponding inline definitions in other translation units, all corresponding objects with static storage duration

are also distinct in each of the definitions.

C++

7.1.2p4A static local variable in an extern inline function always refers to the same object. A string literal in an
extern inline function is the same object in different translation units.

The C++ Standard is silent about the case where the extern keyword does not appear in the declaration.

1 inline const char *saddr(void)
2 {
3 static const char name@lsquare[]@rsquare[] = "saddr";
4 return name;
5 }
6

7 int compare_name(void)
8 {
9 return saddr() == saddr(); /* may use extern definition in one case and inline in the other */

10 // They are either the same or the program is
11 // in violation of 7.1.2p2 (no diagnostic required)
12 }

6.7.5 Declarators

1547
declarator

syntax

declarator:
pointeropt direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator [type-qualifier-listopt assignment-expressionopt]
direct-declarator [static type-qualifier-listopt assignment-expression]
direct-declarator [type-qualifier-list static assignment-expression]
direct-declarator [type-qualifier-listopt *]
direct-declarator (parameter-type-list)
direct-declarator (identifier-listopt)

pointer:

* type-qualifier-listopt
* type-qualifier-listopt pointer

January 30, 2008 v 1.1

6.7.5 Declarators1549

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:

parameter-list
parameter-list , ...

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declaratoropt

identifier-list:
identifier
identifier-list , identifier

C90
Support for the syntax:

direct-declarator [type-qualifier-listopt assignment-expressionopt]
direct-declarator [static type-qualifier-listopt assignment-expression]
direct-declarator [type-qualifier-list static assignment-expression]
direct-declarator [type-qualifier-listopt *]

is new in C99. Also the C90 Standard only supported the form:

direct-declarator [constant-expressionopt]

C++

The syntax:

direct-declarator [type-qualifier-listopt assignment-expressionopt]
direct-declarator [static type-qualifier-listopt assignment-expression]
direct-declarator [type-qualifier-list static assignment-expression]
direct-declarator [type-qualifier-listopt *]
direct-declarator (identifier-listopt)

is not supported in C++ (although the form direct-declarator [constant-expressionopt] is
supported).

The C++ Standard also supports (among other constructions) the form:

8p4 direct-declarator (parameter-declaration-clause) cv-qualifier-seqopt

exception-specificationopt

The C++ Standard also permits the comma before an ellipsis to be omitted, e.g., int f(int a ...);.

Semantics

v 1.1 January 30, 2008

6.7.5.1 Pointer declarators 1562

1549 A full declarator is a declarator that is not part of another declarator. full declarator

C90
Although this term was used in the C90 Standard, in translation limits, it was not explicitly defined.

C++

This term, or an equivalent one, is not defined by the C++ Standard.

1550 The end of a full declarator is a sequence point. full declarator
sequence point

C90
The ability to use an expression causing side effects in an array declarator is new in C99. Without this
construct there is no need to specify a sequence point at the end of a full declarator.

C++

The C++ Standard does not specify that the end of ant declarator is a sequence point. This does not appear to
result in any difference of behavior.

1551 If in the nested sequence of declarators in a full declarator contains there is a declarator specifying a variable variably modified

length array type, the type specified by the full declarator is said to be variably modified.

C90
Support for variably modified types is new in C99.

C++

Support for variably modified types is new in C99 and is not specified in the C++ Standard.

Implementation limits

1558 As discussed in 5.2.4.1, an implementation may limit the number of pointer, array, and function declarators declarator
complexity limitsthat modify an arithmetic, structure, union, or incomplete type, either directly or via one or more typedefs.

C90

The implementation shall allow the specification of types that have at least 12 pointer, array, and function
declarators (in any valid combinations) modifying an arithmetic, a structure, a union, or an incomplete type,
either directly or via one or more typedefs.

6.7.5.1 Pointer declarators
Semantics

1560 If, in the declaration “T D1”, D1 has the form derived-
declarator-

type-list

* type-qualifier-listopt D

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the type
specified for ident is “derived-declarator-type-list type-qualifier-list pointer to T ”.

C++

The C++ Standard uses the term cv-qualifier-seq instead of type-qualifier-list.

January 30, 2008 v 1.1

6.7.5.2 Array declarators1569

1562For two pointer types to be compatible, both shall be identically qualified and both shall be pointers topointer types
to be compatible compatible types.

C++

The C++ Standard does not define the term compatible type, although in the case of qualified pointer types the
term similar is defined (4.4p4). When two pointer types need to interact the C++ Standard usually specifies
that the qualification conversions (clause 4) are applied and then requires that the types be the same. These
C++ issues are discussed in the sentences in which they occur.

6.7.5.2 Array declarators
Constraints

1564In addition to optional type qualifiers and the keyword static, the [and] may delimit an expression or *.

C90

The expression delimited by [and] (which specifies the size of an array) shall be an integral constant expression
that has a value greater than zero.

Support for the optional type qualifiers, the keyword static, the expression not having to be constant, and
support for * between [and] in a declarator is new in C99.

C++

Support for the optional type qualifiers, the keyword static, the expression not having to be constant, and *
between [and] in a declarator is new in C99 and is not specified in the C++ Standard.

1567The element type shall not be an incomplete or function type.array element
not incomplete
type
array element
not function type

C90
In C90 this wording did not appear within a Constraints clause. The requirement for the element type to be
an object type appeared in the description of array types, which made violation of this requirement to be

array
contiguously
allocated set

of objects undefined behavior. The undefined behavior of all known implementations was to issue a diagnostic, so no
actual difference in behavior between C90 and C99 is likely to occur.

C++

8.3.4p1 T is called the array element type; this type shall not be a reference type, the (possibly cv-qualified) type void, a
function type or an abstract class type.

The C++ Standard does not disallow incomplete element types (apart from the type void). This difference
permits a program, written using only C constructs, to be acceptable to a conforming C++ implementation but
not be acceptable to a C implementation.

1568The optional type qualifiers and the keyword static shall appear only in a declaration of a function parameterarray parameter
qualifier only in
outermost with an array type, and then only in the outermost array type derivation.

C90
Support for use of type qualifiers and the keyword static in this context is new in C99.

C++

Support for use of type qualifiers and the keyword static in this context is new in C99 is not supported in
C++.

v 1.1 January 30, 2008

6.7.5.2 Array declarators 1574

1569
variable modified

only scope
Only an An ordinary identifier (as defined in 6.2.3) with both block scope or function prototype scope and no
linkage shall have a variably modified type. that has a variably modified type shall have either block scope and
no linkage or function prototype scope.

C90
Support for variably modified types is new in C99.

C++

Support for variably modified types is new in C99 and is not specified in the C++ Standard.

Semantics

1571 If, in the declaration “T D1”, D1 has one of the forms: qualified array of

D[type-qualifier-listopt assignment-expressionopt]
D[static type-qualifier-listopt assignment-expression]
D[type-qualifier-list static assignment-expression]
D[type-qualifier-listopt *]

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the type
specified for ident is “derived-declarator-type-list array of T ”.121)

C90
Support for forms other than:

D[constant-expressionopt]

is new in C99.

C++

The C++ Standard only supports the form:

D[constant-expressionopt]

A C++ translator will issue a diagnostic if it encounters anything other than a constant expression between
the [and] tokens.

The type of the array is also slightly different in C++, which include the number of elements in the type:

8.3.4p1. . . the array has N elements numbered 0 to N-1, and the type of the identifier of D is
“derived-declarator-type-list array of N T.”

1573 If the size is not present, the array type is an incomplete type. array
incomplete type

C++

The C++ Standard classifies all compound types as object types. It uses the term incomplete object type to 475 object types

refer to this kind of type.

8.3.4p1If the constant expression is omitted, the type of the identifier of D is “derived-declarator-type-list array
of unknown bound of T,” an incomplete object type.

January 30, 2008 v 1.1

6.7.5.3 Function declarators (including prototypes)1593

1574If the size is * instead of being an expression, the array type is a variable length array type of unspecified size,variable
length array
specified by * which can only be used in declarations with function prototype scope;122)

C90
Support for a size specified using the * token is new in C99.

C++

Specifying a size using the * token is new in C99 and is not available in C++.

1576If the size is an integer constant expression and the element type has a known constant size, the array type isvariable length
array type not a variable length array type;

C90
Support for specifying a size that is not an integer constant expression is new in C99.

C++

Support for specifying a size that is not an integer constant expression is new in C99 and is not specified in
the C++ Standard.

1580If the size is an expression that is not an integer constant expression:

C90
Support for non integer constant expressions in this context is new in C99.

C++

Support for non integer constant expressions in this context is new in C99 and is not available in C++.

1584Where a size expression is part of the operand of a sizeof operator and changing the value of the sizesizeof VLA
unspecified evalu-
ation expression would not affect the result of the operator, it is unspecified whether or not the size expression is

evaluated.

C90
The operand of sizeof was not evaluated in C90. With the introduction of variable length arrays it is possible
that the operand will need to be evaluated in C99.

1585For two array types to be compatible, both shall have compatible element types, and if both size specifiers arearray type
to be compati-
ble present, and are integer constant expressions, then both size specifiers shall have the same constant value.

C++

The C++ Standard does not define the concept of compatible type, it requires types to be the same.
compati-
ble type

if

631

1586If the two array types are used in a context which requires them to be compatible, it is undefined behavior if
the two size specifiers evaluate to unequal values.

C90
The number of contexts in which array types can be incompatible has increased in C99, but the behavior is
intended to be the same.

C++

There are no cases where the C++ Standard discusses a requirement that two arrays have the same number of
elements.

6.7.5.3 Function declarators (including prototypes)
Constraints

v 1.1 January 30, 2008

6.7.5.3 Function declarators (including prototypes) 1595

1593 The only storage-class specifier that shall occur in a parameter declaration is register. parameter
storage-class

C++

7.1.1p2The auto or register specifiers can be applied only to names of objects declared in a block (6.3) or to function
parameters (8.4).

C source code developed using a C++ translator may contain the storage-class specifier auto applied to a
parameter. However, usage of this keyword is rare (see Table ??) and in practice it is very unlikely to occur
in this context.

The C++ Standard covers the other two cases with rather sloppy wording.

7.1.1p4There can be no static function declarations within a block, nor any static function parameters.

7.1.1p5The extern specifier cannot be used in the declaration of class members or function parameters.

1594 An identifier list in a function declarator that is not part of a definition of that function shall be empty.

C++

The C++ Standard does not support the old style of C function declarations.

1595 After adjustment, the parameters in a parameter type list in a function declarator that is part of a definition of parameter
adjustment
in definitionthat function shall not have incomplete type.

C90
The C90 Standard did not explicitly specify that the check on the parameter type being incomplete occurred
“after adjustment”.

C++

The C++ Standard allows a few exceptions to the general C requirement:

8.3.5p6If the type of a parameter includes a type of the form “pointer to array of unknown bound of T” or “reference to
array of unknown bound of T,” the program is ill-formed.87)

Footnote 87This excludes parameters of type “ptr-arr-seq T2” where T2 is “pointer to array of unknown bound of T”
and where ptr-arr-seq means any sequence of “pointer to” and “array of” derived declarator types. This
exclusion applies to the parameters of the function, and if a parameter is a pointer to function or pointer to
member function then to its parameters also, etc.

8.3.5p2The parameter list (void) is equivalent to the empty parameter list. Except for this special case, void shall not
be a parameter type (though types derived from void, such as void*, can).

8.3.5p6

January 30, 2008 v 1.1

6.7.5.3 Function declarators (including prototypes)1598

The type of a parameter or the return type for a function declaration that is not a definition may be an incomplete
class type.

1 void f(struct s1_tag ** p1) /* incomplete type, constraint violation */
2 // defined behavior
3 {
4 struct s2_tag **loc; /* Size not needed, so permitted. */
5 }

Semantics

1596If, in the declaration “T D1”, D1 has the form

D(parameter-type-list)

or

D(identifier-listopt)

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the type
specified for ident is “derived-declarator-type-list function returning T ”.

C++

The form supported by the C++ Standard is:

8.3.5p1 D1 (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

The term used for the identifier in the C++ Standard is:

8.3.5p1 “derived-declarator-type-list function of (parameter-declaration-clause) cv-qualifier-seqopt returning T”;

The old-style function definition D(identifier-listopt) is not supported in C++.

8.3.5p2 If the parameter-declaration-list is empty, the function takes no arguments. The parameter list (void) is
equivalent to the empty parameter list.

The C syntax treats D() as an instance of an empty identifier-list, while the C++ syntax treats it as an
empty parameter-type-list. Using a C++ translator to translate source containing this form of function
declaration may result a diagnostic being generated when the declared function is called (if it specifies any
arguments).

1597A parameter type list specifies the types of, and may declare identifiers for, the parameters of the function.

C++

8.3.5p2 The parameter-declaration-clause determines the arguments that can be specified, and their processing,
when the function is called.

v 1.1 January 30, 2008

6.7.5.3 Function declarators (including prototypes) 1604

1598 A declaration of a parameter as “array of type” shall be adjusted to “qualified pointer to type”, where the type array type
adjust to

pointer toqualifiers (if any) are those specified within the [and] of the array type derivation.

C90
Support for type qualifiers between [and], and the consequences of their use, is new in C99.

C++

This adjustment is performed in C++ (8.3.5p3) but the standard does not support the appearance of type
qualifiers between [and].

Source containing type qualifiers between [and] will cause a C++ translator to generate a diagnostic.

1599 If the keyword static also appears within the [and] of the array type derivation, then for each call to the function
declarator

staticfunction, the value of the corresponding actual argument shall provide access to the first element of an array
with at least as many elements as specified by the size expression.

C90
Support for the keyword static in this context is new in C99.

C++

Support for the keyword static in this context is new in C99 and is not available in C++.

1601 If the list terminates with an ellipsis (, ...), no information about the number or types of the parameters ellipsis
supplies no
informationafter the comma is supplied.123)

C++

The C++ Standard does not make this observation.

1602 The special case of an unnamed parameter of type void as the only item in the list specifies that the function parameter
type voidhas no parameters.

C90
The C90 Standard was reworded to clarify the intent by the response to DR #157.

1603
parameter

declaration
typedef name

in parentheses
If, iIn a parameter declaration, a single typedef name in parentheses is taken to be an abstract declarator
that specifies a function with a single parameter, not as redundant parentheses around the identifier for a
declarator. an identifier can be treated as a typedef name or as a parameter name, it shall be taken as a
typedef name.

C90
The response to DR #009 proposed adding the requirement: “If, in a parameter declaration, an identifier can
be treated as a typedef name or as a parameter name, it shall be taken as a typedef name.”

1604 If the function declarator is not part of a definition of that function, parameters may have incomplete type and
may use the [*] notation in their sequences of declarator specifiers to specify variable length array types.

C90
Support for the [*] notation is new in C99.

C++

The wording:

8.3.5p6If the type of a parameter includes a type of the form “pointer to array of unknown bound of T” or “reference to
array of unknown bound of T,” the program is ill-formed.87)

January 30, 2008 v 1.1

6.7.5.3 Function declarators (including prototypes)1614

does not contain an exception for the case of a function declaration.
Support for the [*] notation is new in C99 and is not specified in the C++ Standard.

1606An identifier list declares only the identifiers of the parameters of the function.

C++

This form of function declarator is not available in C++.

1608The empty list in a function declarator that is not part of a definition of that function specifies that no informationfunction
declarator
empty list about the number or types of the parameters is supplied.124)

C++

The following applies to both declarations and definitions of functions:

8.3.5p2 If the parameter-declaration-clause is empty, the function takes no arguments.

A call made within the scope of a function declaration that specifies an empty parameter list, that contains
arguments will cause a C++ translator to issue a diagnostic.

1611For two function types to be compatible, both shall specify compatible return types.125)function
compatible types

C++

The C++ Standard does not define the concept of compatible type, it requires types to be the same.
compati-
ble type

if

631

3.5p10
After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types specified
by all declarations referring to a given object or function shall be identical, . . .

8.3.5p3 All declarations for a function with a given parameter list shall agree exactly both in the type of the value
returned and in the number and type of parameters; the presence or absence of the ellipsis is considered part of
the function type.

If one return type is an enumerated type and the another return type is the compatible integer type. C would
consider the functions compatible. C++ would not consider the types as agreeing exactly.

1612Moreover, the parameter type lists, if both are present, shall agree in the number of parameters and in use of
the ellipsis terminator;

C++

A parameter type list is always present in C++, although it may be empty.

1613corresponding parameters shall have compatible types.

C++

8.3.5p3 All declarations for a function with a given parameter list shall agree exactly both in the type of the value
returned and in the number and type of parameters; the presence or absence of the ellipsis is considered part of
the function type.

The C++ Standard does not define the concept of compatible type, it requires types to be the same. If one
compati-
ble type

if

631

parameter type is an enumerated type and the corresponding parameter type is the corresponding compatible
integer type. C would consider the functions to be compatible, but C++ would not consider the types as being
the same.

v 1.1 January 30, 2008

6.7.5.3 Function declarators (including prototypes) 1616

1614 If one type has a parameter type list and the other type is specified by a function declarator that is not part
of a function definition and that contains an empty identifier list, the parameter list shall not have an ellipsis
terminator and the type of each parameter shall be compatible with the type that results from the application
of the default argument promotions.

C++

The C++ Standard does not support the C identifier list form of parameters. An empty parameter list is
interpreted differently:

8.3.5p2If the parameter-declaration-clause is empty, the function takes no arguments.

The two function declarations do not then agree:

3.5p10After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types specified
by all declarations referring to a given object or function shall be identical, . . .

A C++ translator is likely to issue a diagnostic if two declarations of the same function do not agree (the object
code file is likely to contain function signatures, which are based on the number and type of the parameters
in the declarations).

1615 If one type has a parameter type list and the other type is specified by a function definition that contains a
(possibly empty) identifier list, both shall agree in the number of parameters, and the type of each prototype
parameter shall be compatible with the type that results from the application of the default argument promotions
to the type of the corresponding identifier.

C++

The C++ Standard does not support the C identifier list form of parameters.

8.3.5p2If the parameter-declaration-clause is empty, the function takes no arguments.

The C++ Standard requires that a function declaration always be visible at the point of call (5.2.2p2). Issues
involving argument promotion do not occur (at least for constructs supported in C).

1 void f(int, char);
2 void f(char, int);
3 char a, b;
4 f(a,b); // illegal: Which function is called? Both fit
5 // equally well (equally badly).

1616 (In the determination of type compatibility and of a composite type, each parameter declared with function or parameter
qualifier in

composite typearray type is taken as having the adjusted type and each parameter declared with qualified type is taken as
having the unqualified version of its declared type.)

C90
The C90 wording:

(For each parameter declared with function or array type, its type for these comparisons is the one that results
from conversion to a pointer type, as in 6.7.1. For each parameter declared with qualified type, its type for these
comparisons is the unqualified version of its declared type.)

was changed by the response to DR #013 question 1 (also see DR #017q15 and DR #040q1).

January 30, 2008 v 1.1

6.7.6 Type names1621

C++

The C++ Standard does not define the term composite type. Neither does it define the concept of compatiblecompos-
ite type

642

type, it requires types to be the same.compati-
ble type

if

631

The C++ Standard transforms the parameters’ types and then:

8.3.5p3 If a storage-class-specifier modifies a parameter type, the specifier is deleted. [Example: register
char* becomes char* —end example] Such storage-class-specifiers affect only the definition of the
parameter within the body of the function; they do not affect the function type. The resulting list of transformed
parameter types is the function’s parameter type list.

It is this parameter type list that is used to check whether two declarations are the same.

1617EXAMPLE 1 The declarationEXAMPLE
function return-
ing pointer to

int f(void), *fip(), (*pfi)();

declares a function f with no parameters returning an int, a function fip with no parameter specification
returning a pointer to an int, and a pointer pfi to a function with no parameter specification returning an
int. It is especially useful to compare the last two. The binding of *fip() is *(fip()), so that the declaration
suggests, and the same construction in an expression requires, the calling of a function fip, and then using
indirection through the pointer result to yield an int. In the declarator (*pfi)(), the extra parentheses are
necessary to indicate that indirection through a pointer to a function yields a function designator, which is then
used to call the function; it returns an int.
If the declaration occurs outside of any function, the identifiers have file scope and external linkage. If the
declaration occurs inside a function, the identifiers of the functions f and fip have block scope and either
internal or external linkage (depending on what file scope declarations for these identifiers are visible), and
the identifier of the pointer pfi has block scope and no linkage.

C++

Function declared with an empty parameter type list are considered to take no arguments in C++.

1620125) If both function types are “old style”, parameter types are not compared.footnote
125

C++

The C++ Standard does not support old style function types.

1621EXAMPLE 4 The following prototype has a variably modified parameter.

void addscalar(int n, int m,
double a[n][n*m+300], double x);

int main()
{

double b[4][308];
addscalar(4, 2, b, 2.17);
return 0;

}

void addscalar(int n, int m,
double a[n][n*m+300], double x)

{
for (int i = 0; i < n; i++)

for (int j = 0, k = n*m+300; j < k; j++)
// a is a pointer to a VLA with n*m+300 elements
a[i][j] += x;

}

v 1.1 January 30, 2008

6.7.6 Type names 1627

C90
Support for variably modified types is new in C99.

C++

Support for variably modified types is new in C99 and is not specified in the C++ Standard.

6.7.6 Type names

1624
ab-

stract declarator
syntax

type-name:
specifier-qualifier-list abstract-declaratoropt

abstract-declarator:
pointer
pointeropt direct-abstract-declarator

direct-abstract-declarator:
(abstract-declarator)
direct-abstract-declaratoropt [assignment-expression opt]
direct-abstract-declaratoropt [type-qualifier-listopt assignment-expression opt]
direct-abstract-declaratoropt [static type-qualifier-listopt assignment-expression]
direct-abstract-declaratoropt [type-qualifier-list static assignment-expression]
direct-abstract-declaratoropt [*]
direct-abstract-declaratoropt (parameter-type-listopt)

C90
Support for the form:

direct-abstract-declaratoropt [*]

is new in C99. In the form:

direct-abstract-declaratoropt [assignment-expressionopt]

C90 only permitted constant-expressionopt to appear between [and].

C++

The C++ Standard supports the C90 forms. It also includes the additional form (8.1p1):

direct-abstract-declaratoropt (parameter-declaration-clause)
cv-qualifier-seqopt exception-specificationopt

Semantics

1626 This is accomplished using a type name, which is syntactically a declaration for a function or an object of that
type that omits the identifier.126)

C++

Restrictions on the use of type names in C++ are discussed elsewhere. 1118 sizeof
constraints

1134 cast
scalar or void
type

function
declarator return
type

1627 EXAMPLE The constructions EXAMPLE
abstract

declarators(a) int
(b) int *
(c) int *[3]
(d) int (*)[3]
(e) int (*)[*]
(f) int *()
(g) int (*)(void)
(h) int (*const [])(unsigned int, ...)

January 30, 2008 v 1.1

6.7.8 Initialization1641

name respectively the types (a) int, (b) pointer to int, (c) array of three pointers to int, (d) pointer to an
array of three ints, (e) pointer to a variable length array of an unspecified number of ints, (f) function with no
parameter specification returning a pointer to int, (g) pointer to function with no parameters returning an int,
and (h) array of an unspecified number of constant pointers to functions, each with one parameter that has
type unsigned int and an unspecified number of other parameters, returning an int.

C90
Support for variably length arrays is new in C99.

C++

Support for variably length arrays is new in C99 and is not specified in the C++ Standard.

6.7.7 Type definitions
Constraints

1630If a typedef name specifies a variably modified type then it shall have block scope.

C90
Support for variably modified types is new in C99.

C++

Support for variably modified types is new in C99 and not specified in the C++ Standard.

Semantics

1632Any array size expressions associated with variable length array declarators are evaluated each time thearray size
evaluated when
declaration
reached

declaration of the typedef name is reached in the order of execution.

C90
Support for variable length array declarators is new in C99.

C++

Support for variable length array declarators is new in C99 and is not specified in the C++ Standard.

1634That is, in the following declarations:

typedef T type_ident;
type_ident D;

type_ident is defined as a typedef name with the type specified by the declaration specifiers in T (known as T),
and the identifier in D has the type “derived-declarator-type-list T” where the derived-declarator-type-list
is specified by the declarators of D.

C++

This example and its associated definition of terms is not given in the C++ Standard.

6.7.8 Initialization

1641
initialization
syntax

initializer:
assignment-expression
{ initializer-list }
{ initializer-list , }

initializer-list:
designationopt initializer
initializer-list , designationopt initializer

designation:

v 1.1 January 30, 2008

6.7.8 Initialization 1644

designator-list =
designator-list:

designator

designator-list designator
designator:

[constant-expression]
. identifier

C90
Support for designators in initializers is new in C99.

C++

Support for designators in initializers is new in C99 and is not specified in the C++ Standard.

Constraints

1642 No initializer shall attempt to provide a value for an object not contained within the entity being initialized. initializer
value not con-

tained in objectC90

There shall be no more initializers in an initializer list than there are objects to be initialized.

Support for designators in initializers is new in C99 and a generalization of the wording is necessary to cover
the case of a name being used that is not a member of the structure or union type, or an array index that does
not lie within the bounds of the object array type.

C++

The C++ Standard wording has the same form as C90, because it does not support designators in initializers.

8.5.1p6An initializer-list is ill-formed if the number of initializers exceeds the number of members or elements to
initialize.

1643 The type of the entity to be initialized shall be an array of unknown size or an object type that is not a variable
length array type.

C90
Support for variable length array types is new in C99.

1644 All the expressions in an initializer for an object that has static storage duration shall be constant expressions initializer
static storage

duration objector string literals.

January 30, 2008 v 1.1

6.7.8 Initialization1650

C90

All the expressions in an initializer for an object that has static storage duration or in an initializer list for an
object that has aggregate or union type shall be constant expressions.

C99 has relaxed the requirement that aggregate or union types always be initialized with constant expressions.
Support for string literals in this context was added by the response to DR #150.

C++

8.5p2 Automatic, register, static, and external variables of namespace scope can be initialized by arbitrary expressions
involving literals and previously declared variables and functions.

A program, written using only C constructs, could be acceptable to a conforming C++ implementation, but
not be acceptable to a C implementation.

C++ translators that have an operate in C mode option have been known to fail to issue a diagnostic for
initializers that would not be acceptable to conforming C translators.

1645If the declaration of an identifier has block scope, and the identifier has external or internal linkage, theidentifier
linkage at block
scope declaration shall have no initializer for the identifier.

C++

The C++ Standard does not specify any equivalent constraint.

1646If a designator has the formdesignator
constant-
expression

[constant-expression]

then the current object (defined below) shall have array type and the expression shall be an integer constant
expression.

C90
Support for designators is new in C99.

C++

Support for designators is new in C99 and is not specified in the C++ Standard.

1648If a designator has the formdesignator
. identifier

. identifier

then the current object (defined below) shall have structure or union type and the identifier shall be the name
of a member of that type.

C90
Support for designators is new in C99.

C++

Support for designators is new in C99 and is not specified in the C++ Standard.

Semantics

1650Except where explicitly stated otherwise, for the purposes of this subclause unnamed members of objects ofunnamed
members
initialization of structure and union type do not participate in initialization.

v 1.1 January 30, 2008

6.7.8 Initialization 1658

C90
The C90 Standard wording “All unnamed structure or union members are ignored during initialization.” was
modified by the response to DR #017q17.

C++

This requirement is not explicitly specified in the C++ Standard.

1651 Unnamed members of structure objects have indeterminate value even after initialization.

C90
This was behavior was not explicitly specified in the C90 Standard.

C++

This behavior is not explicitly specified in the C++ Standard.

1653 If an object that has static storage duration is not initialized explicitly, then: static initialization
default value

C++

The C++ Standard specifies a two-stage initialization model. The final result is the same as that specified for
C.

8.5p6The memory occupied by any object of static storage duration shall be zero-initialized at program startup before
any other initialization takes place. [Note: in some cases, additional initialization is done later.]

1655 — if it has arithmetic type, it is initialized to (positive or unsigned) zero;

C90
The distinction between the signedness of zero is not mentioned in the C90 Standard.

1657— if it is a union, the first named member is initialized (recursively) according to these rules.

C90
This case was not called out in the C90 Standard, but was added by the response in DR #016.

C++

The C++ Standard, 8.5p5, specifies the first data member, not the first named data member.

1658 The initializer for a scalar shall be a single expression, optionally enclosed in braces. initializer
scalar

C++

8.5p13If T is a scalar type, then a declaration of the form

T x = { a };

is equivalent to

T x = a;

This C++ specification is not the same the one in C, as can be seen in:

January 30, 2008 v 1.1

6.7.8 Initialization1669

1 struct DR_155 {
2 int i;
3 } s = { { 1 } }; /* does not affect the conformance status of the program */
4 // ill-formed

8.5p14 If the conversion cannot be done, the initialization is ill-formed.

While a C++ translator is required to issue a diagnostic for a use of this ill-formed construct, such an
occurrence causes undefined behavior in C (the behavior of many C translators is to issue a diagnostic).

1659The initial value of the object is that of the expression (after conversion);

C90
The C90 wording did not include “(after conversion)”. Although all known translators treated initializers just
like assignment and performed the conversion.

1660the same type constraints and conversions as for simple assignment apply, taking the type of the scalar to beinitializer
type constraints the unqualified version of its declared type.

C++

Initialization is not the same as simple assignment in C++ (5.17p5, 8.5p14). However, if only the constructs
available in C are used the behavior is the same.

1662The initializer for a structure or union object that has automatic storage duration shall be either an initializer list
as described below, or a single expression that has compatible structure or union type.

C++

The C++ Standard permits an arbitrary expression to be used in all contexts (8.5p2).
This difference permits a program, written using only C constructs, to be acceptable to a conforming C++

implementation but not be acceptable to a C implementation. C++ translators that have an operate in C mode
switch do not always diagnose initializers that would not be acceptable to all conforming C translators.

1663In the latter case, the initial value of the object, including unnamed members, is that of the expression.initializing
including un-
named members C++

The C++ Standard does not contain this specification.

1665Successive characters of the character string literal (including the terminating null character if there is room orinitialize
uses succes-
sive characters
from string literal

if the array is of unknown size) initialize the elements of the array.

C++

The C++ Standard does not specify that the terminating null character is optional, as is shown by an explicit
example (8.5.2p2).
An object initialized with a string literal whose terminating null character is not included in the value used to
initialize the object, will cause a diagnostic to be issued by a C++ translator.

1 char hello@lsquare[]5@rsquare[] = "world"; /* strictly conforming */
2 // ill-formed

1669Each brace-enclosed initializer list has an associated current object.current object
brace enclosed
initializer

v 1.1 January 30, 2008

6.7.8 Initialization 1677

C90
The concept of current object is new in C99.

C++

The concept of current object is new in C99 and is not specified in the C++ Standard. It is not needed
because the ordering of the initializer is specified (and the complications of designation initializers don’t
exist, because they are not supported):

8.5.1p2. . . , written in increasing subscript or member order. If the aggregate contains subaggregates, this rule applies
recursively to the members of the subaggregate.

1670 When no designations are present, subobjects of the current object are initialized in order according to the initialization
no designator

member orderingtype of the current object: array elements in increasing subscript order, structure members in declaration
order, and the first named member of a union.127)

C90

Otherwise, the initializer for an object that has aggregate type shall be a brace-enclosed list of initializers for
the members of the aggregate, written in increasing subscript or member order; and the initializer for an object
that has union type shall be a brace-enclosed initializer for the first member of the union.

The wording specifying named member was added by the response to DR #016.

1671 In contrast, a designation causes the following initializer to begin initialization of the subobject described by initialization
using a declaratorthe designator.

C90
Support for designations is new in C99.

C++

Support for designations is new in C99, and is not available in C++

1673 Each designator list begins its description with the current object associated with the closest surrounding designator list
current objectbrace pair.

C90
Support for designators is new in C99.

C++

Support for designators is new in C99, and is not available in C++

1676 The initialization shall occur in initializer list order, each initializer provided for a particular subobject overriding initialization
in list orderany previously listed initializer for the same subobject;130)

C++

The C++ Standard does not support designators and so it is not possible to specify more than one initializer
for an object.

1677 all subobjects that are not initialized explicitly shall be initialized implicitly the same as objects that have static object
initialized but
not explicitlystorage duration.

January 30, 2008 v 1.1

6.7.8 Initialization1686

C++

The C++ Standard specifies that objects having static storage duration are zero-initialized (8.5p6), while
members that are not explicitly initialized are default-initialized (8.5.1p7). If constructs that are only available
in C are used the behavior is the same as that specified in the C Standard.

1681any remaining initializers are left to initialize the next element or member of the aggregate of which the current
subaggregate or contained union is a part.

C90
This behavior was not pointed out in the C90 Standard.

1682If there are fewer initializers in a brace-enclosed list than there are elements or members of an aggregate,initializer
fewer in list than
members or fewer characters in a string literal used to initialize an array of known size than there are elements in the

array, the remainder of the aggregate shall be initialized implicitly the same as objects that have static storage
duration.

C90
The string literal case was not explicitly specified in the C90 Standard, but was added by the response to DR
#060.

C++

The C++ Standard specifies that objects having static storage duration are zero-initialized (8.5p6), while
members that are not explicitly initialized are default-initialized (8.5.1p7). If only constructs available in C
are used the behavior is the same as that specified in the C Standard.

1683If an array of unknown size is initialized, its size is determined by the largest indexed element with an explicitarray of un-
known size
initialized initializer.

C90

If an array of unknown size is initialized, its size is determined by the number of initializers provided for its
elements.

Support for designators is new in C99.

1684At the end of its initializer list, the array no longer has incomplete type.initializer
completes in-
complete array
type C++

The C++ Standard does not specify how an incomplete array type can be completed. But the example in
8.5.1p4 suggests that with an object definition, using an incomplete array type, the initializer creates a new
array type. The C++ Standard seems to create a new type, rather than completing the existing incomplete one
(which is defined, 8.3.4p1, as being a different type).

1685127) If the initializer list for a subaggregate or contained union does not begin with a left brace, its subobjectsfootnote
127 are initialized as usual, but the subaggregate or contained union does not become the current object: current

objects are associated only with brace-enclosed initializer lists.

C90
The concept of current object is new in C99.

C++

The concept of current object is new in C99 and is not specified in the C++ Standard.

v 1.1 January 30, 2008

6.7.8 Initialization 1700

1686 128) After a union member is initialized, the next object is not the next member of the union; footnote
128

C90
The C90 Standard explicitly specifies, in all the relevant places in the text, that only the first member of a
union is initialized.

1691 The order in which any side effects occur among the initialization list expressions is unspecified.131)

C90
The C90 Standard requires that the expressions used to initialize an aggregate or union be constant expressions.
Whatever the order of evaluation used the external behavior is likely to be the same (it is possible that one or
more members of a structure type are volatile-qualified).

C++

The C++ Standard does not explicitly specify any behavior for the order of side effects among the initialization
list expressions (which implies unspecified behavior in this case).

1692 EXAMPLE 1 Provided that <complex.h> has been #included, the declarations

int i = 3.5;
double complex c = 5 + 3 * I;

define and initialize i with the value 3 and c with the value 5.0 + i3.0.

C90
Support for complex types is new in C99.

C++

The C++ Standard does not define an identifier named I in <complex>.

1697 131) In particular, the evaluation order need not be the same as the order of subobject initialization. footnote
131

C++

The C++ Standard does explicitly specify the ordering of side effects among the expressions contained in an
initialization list.

1699 EXAMPLE 7
One form of initialization that completes array types involves typedef names. Given the declaration

typedef int A[]; // OK - declared with block scope

the declaration

A a = { 1, 2 }, b = { 3, 4, 5 };

is identical to

int a[] = { 1, 2 }, b[] = { 3, 4, 5 };

due to the rules for incomplete types.

C++

The C++ Standard does not explicitly specify this behavior.

January 30, 2008 v 1.1

6.7.8 Initialization1704

1700EXAMPLE 8 The declarationEXAMPLE
array initializa-
tion char s[] = "abc", t[3] = "abc";

defines “plain” char array objects s and t whose elements are initialized with character string literals. This
declaration is identical to

char s[] = { ’a’, ’b’, ’c’, ’\0’ },
t[] = { ’a’, ’b’, ’c’ };

The contents of the arrays are modifiable. On the other hand, the declaration

char *p = "abc";

defines p with type “pointer to char” and initializes it to point to an object with type “array of char” with length
4 whose elements are initialized with a character string literal. If an attempt is made to use p to modify the
contents of the array, the behavior is undefined.

C++

The initializer used in the declaration of t would cause a C++ translator to issue a diagnostic. It is not
equivalent to the alternative, C, form given below it.

1701EXAMPLE 9 Arrays can be initialized to correspond to the elements of an enumeration by using designators:

enum { member_one, member_two };
const char *nm[] = {

[member_two] = "member two",
[member_one] = "member one",

};

C90
Support for designators is new in C99.

C++

Support for designators is new in C99 and they are not specified in the C++ Standard.

1702EXAMPLE 10 Structure members can be initialized to nonzero values without depending on their order:EXAMPLE
div_t

div_t answer = { .quot = 2, .rem = -1 };

C90
Support for designators is new in C99.

C++

Support for designators is new in C99 and they are not specified in the C++ Standard.

1703EXAMPLE 11 Designators can be used to provide explicit initialization when unadorned initializer lists mightEXAMPLE
designators with
inconsistently
brackets

be misunderstood:

struct { int a[3], b; } w[] =
{ [0].a = {1}, [1].a[0] = 2 };

C90
Support for designators is new in C99.

C++

Support for designators is new in C99 and they are not specified in the C++ Standard.

v 1.1 January 30, 2008

6.8 Statements and blocks 1710

1704 EXAMPLE 12 Space can be “allocated” from both ends of an array by using a single designator: EXAMPLE
overriding values

int a[MAX] = {
1, 3, 5, 7, 9, [MAX-5] = 8, 6, 4, 2, 0

};

In the above, if MAX is greater than ten, there will be some zero-valued elements in the middle; if it is less than
ten, some of the values provided by the first five initializers will be overridden by the second five.

C90
Support for designators is new in C99.

C++

Support for designators is new in C99 and they are not specified in the C++ Standard.

1705 EXAMPLE 13 Any member of a union can be initialized:

union { /* ... */ } u = { .any_member = 42 };

C90
Support for designators is new in C99.

C++

Support for designators is new in C99 and they are not specified in the C++ Standard.

6.8 Statements and blocks

1707
statement

syntax

statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

C++

In C++ local declarations are classified as statements (6p1). They are called declaration statements and their
syntax nonterminal is declaration-statement.

Semantics

1708 A statement specifies an action to be performed. statement

C++

The C++ Standard does not make this observation.

1710 A block allows a set of declarations and statements to be grouped into one syntactic unit. block

C90

A compound statement (also called a block) allows a set of statements to be grouped into one syntactic unit,
which may have its own set of declarations and initializations (as discussed in 6.1.2.4).

The term block includes compound statements and other constructs, that need not be enclosed in braces, in
1729 compound

statement
syntax

C99. The differences associated with these constructs is called out in the sentences in which they occur.

January 30, 2008 v 1.1

6.8.1 Labeled statements1725

C++

The C++ Standard does not make this observation.

1711The initializers of objects that have automatic storage duration, and the variable length array declarators ofobject
initializer evalu-
ated when ordinary identifiers with block scope, are evaluated and the values are stored in the objects (including storing

an indeterminate value in objects without an initializer) each time the declaration is reached in the order of
execution, as if it were a statement, and within each declaration in the order that declarators appear.

C90
Support for variable length array types is new in C99.

C++

Support for variable length array types is new in C99 and they are not specified in the C++ Standard.

1712A full expression is an expression that is not part of another expression or of a declarator.full expression

C++

1.9p12 A full-expression is an expression that is not a subexpression of another expression.

The C++ Standard does not include declarators in the definition of a full expression. Source developed using
a C++ translator may contain declarations whose behavior is undefined in C.

1 int i;
2

3 void f(void)
4 {
5 int a@lsquare[]i++@rsquare[]@lsquare[]i++@rsquare[]; /* undefined behavior */
6 // a sequence point between modifications to i
7 }

1713Each of the following is a full expression:

C++

The C++ Standard does not enumerate the constructs that are full expressions.

1715the expression in an expression statement;full expression
expression state-
ment C++

The following is not the same as saying that an expression statement is a full expression, but it shows the
effect is the same:

6.2p1 All side effects from an expression statement are completed before the next statement is executed.

6.8.1 Labeled statements
Constraints

1725Label names shall be unique within a function.label name
unique

v 1.1 January 30, 2008

6.8.4 Selection statements 1735

C90
This wording occurred in Clause 6.1.2.1 Scope of identifiers in the C90 Standard. As such a program that
contained non unique labels exhibited undefined behavior.
A function definition containing a non-unique label name that was accepted by some C90 translator (a very
rare situation) will cause a C99 translator to generate a diagnostic.

Semantics

1727 Labels in themselves do not alter the flow of control, which continues unimpeded across them. case
fall through

C++

The C++ Standard only explicitly states this behavior for case and default labels (6.4.2p6). It does not
specify any alternative semantics for ’ordinary’ labels.

6.8.2 Compound statement

1729
compound state-

ment
syntax

compound-statement:
{ block-item-listopt }

block-item-list:
block-item
block-item-list block-item

block-item:
declaration
statement

C90
The C90 syntax required that declarations occur before statements and the two not be intermixed.

compound-statement:
{ declaration-listopt statement-listopt }

declaration-list:
declaration
declaration-list declaration

statement-list:
statement
statement-list statement

C++

The C++ Standard uses the C90 syntax. However, the interpretation is the same as the C99 syntax because
C++ classifies a declaration as a statement.

Semantics

1730 A compound statement is a block. compound
statement
is a blockC90

The terms compound statement and block were interchangeable in the C90 Standard.

6.8.3 Expression and null statements
Semantics

1735 132) Such as assignments, and function calls which have side effects. footnote
132

January 30, 2008 v 1.1

6.8.4.1 The if statement1743

C++

The C++ Standard does not contain this observation.

6.8.4 Selection statements
Semantics

1740A selection statement selects among a set of statements depending on the value of a controlling expression.controlling
expression
if statement C++

The C++ Standard omits to specify how the flows of control are selected:

6.4p1 Selection statements choose one of several flows of control.

1741A selection statement is a block whose scope is a strict subset of the scope of its enclosing block.block
selection state-
ment C90

See Commentary.

C++

The C++ behavior is the same as C90. See Commentary.

1742Each associated substatement is also a block whose scope is a strict subset of the scope of the selectionblock
selection sub-
statement statement.

C90
The following example illustrates the rather unusual combination of circumstances needed for the specification
change, introduced in C99, to result in a change of behavior.

1 extern void f(int);
2 enum {a, b} glob;
3

4 int different(void)
5 {
6 if (glob == a)
7 /* No braces. */
8 f((enum {b, a})1); /* Declare identifiers with same name and compatible type. */
9

10 return b; /* C90: numeric value 1 */
11 /* C99: numeric value 0 */
12 }

C++

The C++ behavior is the same as C90.

6.8.4.1 The if statement
Constraints

1743The controlling expression of an if statement shall have scalar type.if statement
controlling ex-
pression scalar
type

C++

6.4p4

v 1.1 January 30, 2008

6.8.4.2 The switch statement 1749

The value of a condition that is an expression is the value of the expression, implicitly converted to bool for
statements other than switch; if that conversion is ill-formed, the program is ill-formed.

If only constructs that are available in C are used the set of possible expressions is the same.
Semantics

1744 In both forms, the first substatement is executed if the expression compares unequal to 0. if statement
operand com-

pare against 0C++

The C++ Standard expresses this behavior in terms of true and false (6.4.1p1). The effect is the same.

1746 If the first substatement is reached via a label, the second substatement is not executed.

C++

The C++ Standard does not explicitly specify the behavior for this case.

6.8.4.2 The switch statement
Constraints

1748 The controlling expression of a switch statement shall have integer type. switch
statement

C++

6.4.2p2The condition shall be of integral type, enumeration type, or of a class type for which a single conversion
function to integral or enumeration type exists (12.3).

If only constructs that are available in C are used the set of possible expressions is the same.

1749 If a switch statement has an associated case or default label within the scope of an identifier with a variably switch
past variably

modified typemodified type, the entire switch statement shall be within the scope of that identifier.133)

C90
Support for variably modified types is new in C99.
C++

Support for variably modified types is new in C99 and is not specified in the C++ Standard.
The C++ Standard contains the additional requirement that (the wording in a subsequent example suggests

that being visible rather than in scope is more accurate terminology):

6.7p3It is possible to transfer into a block, but not in a way that bypasses declarations with initialization. A program
that jumps77) from a point where a local variable with automatic storage duration is not in scope to a point where
it is in scope is ill-formed unless the variable has POD type (3.9) and is declared without an initializer
(8.5).

1 void f(void)
2 {
3 switch (2)
4 {
5 int loc = 99; /* strictly conforming */
6 // ill-formed
7

8 case 2: return;
9 }

10 }

January 30, 2008 v 1.1

6.8.5 Iteration statements1766

Semantics
Implementation limits

6.8.5 Iteration statements

1763
iteration state-
ment
syntax

iteration-statement:
while (expression) statement
do statement while (expression) ;
for (expressionopt ; expressionopt ; expressionopt) statement
for (declaration expressionopt ; expressionopt) statement

C90
Support for the form:

for (declaration expropt ; expropt) statement

is new in C99.

C++

The C++ Standard allows local variable declarations to appear within all conditional expressions. These can
occur in if, while, and switch statements.

Constraints

1765The declaration part of a for statement shall only declare identifiers for objects having storage class auto orfor statement
declaration part

register.

C90
Support for this functionality is new in C99.

C++

6.4p2 The declarator shall not specify a function or an array. The type-specifier-seq shall not contain typedef
and shall not declare a new class or enumeration.

1 void f(void)
2 {
3 for (int la@lsquare[]10@rsquare[]; /* does not change the conformance status of the program */
4 // ill-formed
5 ; ;)
6 ;
7 for (enum {E1, E2} le; /* does not change the conformance status of the program */
8 // ill-formed
9 ; ;)

10 ;
11 for (static int ls; /* constraint violation */
12 // does not change the conformance status of the program
13 ; ;)
14 ;
15 }

Semantics

v 1.1 January 30, 2008

6.8.6 Jump statements 1784

1766 An iteration statement causes a statement called the loop body to be executed repeatedly until the controlling iteration
statement
executed

repeatedly
loop body

expression compares equal to 0.

C++

The C++ Standard converts the controlling expression to type bool and expresses the termination condition
in terms of true and false. The final effect is the same as in C.

6.8.5.1 The while statement
6.8.5.2 The do statement
6.8.5.3 The for statement

1774 The statement for
statement

for (clause-1 ; expression-2 ; expression-3) statement

behaves as follows:

C90

Except for the behavior of a continue statement in the loop body, the statement

for (expression-1 ; expression-2 ; expression-3) statement

and the sequence of statements

expression-1 ;
while (expression-2) {
statement ;
expression-3 ;
}

are equivalent.

C++

Like the C90 Standard, the C++ Standard specifies the semantics in terms of an equivalent while statement.
However, the C++ Standard uses more exact wording, avoiding the possible ambiguities present in the C90
wording.

1777 If clause-1 is a declaration, the scope of any variables identifiers it declares is the remainder of the declaration
and the entire loop, including the other two expressions;

C90
Support for this functionality is new in C99.

1780 Both clause-1 and expression-3 can be omitted.

C++

The C++ Standard does not make this observation, that can be deduced from the syntax.

6.8.6 Jump statements
Semantics

January 30, 2008 v 1.1

6.8.6.2 The continue statement1795

1784134) Thus, clause-1 specifies initialization for the loop, possibly declaring one or more variables for use in thefootnote
134 loop;

C90
Support for declaring variables in this context is new in C99.

C++

The C++ Standard does not make this observation.

6.8.6.1 The goto statement
Constraints

1788A goto statement shall not jump from outside the scope of an identifier having a variably modified type togoto
past variably
modified type inside the scope of that identifier.

C90
Support for variably modified types is new in C99.

C++

Support for variably modified types is new in C99 and they are not specified in the C++ Standard. However,
the C++ Standard contains the additional requirement that (the wording in a subsequent example suggests that
being visible rather than in scope more accurately reflects the intent):

6.7p3 A program that jumps77) from a point where a local variable with automatic storage duration is not in scope
to a point where it is in scope is ill-formed unless the variable has POD type (3.9) and is declared without an
initializer (8.5).

A C function that performs a jump into a block that declares an object with an initializer will cause a C++

translator to issue a diagnostic.

1 void f(void)
2 {
3 goto lab; /* strictly conforming */
4 // ill-formed
5 int loc = 1;
6

7 lab: ;
8 }

Semantics

6.8.6.2 The continue statement
Constraints
Semantics

1795More precisely, in each of the statements

while (/* ... */) { do { for (/* ... */) {
/* ... */ /* ... */ /* ... */
continue; continue; continue;
/* ... */ /* ... */ /* ... */

contin: ; contin: ; contin: ;
} } while (/* ... */); }

unless the continue statement shown is in an enclosed iteration statement (in which case it is interpreted
within that statement), it is equivalent to goto contin;.135)

v 1.1 January 30, 2008

6.8.6.4 The return statement 1803

C++

The C++ Standard uses the example (6.6.2p1):

6.6.2p1
while (foo) { do { for (;;) {
{ { {
// ... // ... // ...

} } }
contin: ; contin: ; contin: ;
} } while (foo); }

The additional brace-pair are needed to ensure that any necessary destructors (a construct not supported by
C) are invoked.

6.8.6.3 The break statement
Constraints
Semantics

6.8.6.4 The return statement
Constraints

1799 A return statement with an expression shall not appear in a function whose return type is void. return
void type

C++

6.6.3p3A return statement with an expression of type “cv void” can be used only in functions with a return type of cv
void; the expression is evaluated just before the function returns to its caller.

Source developed using a C++ translator may contain return statements with an expression returning a void
type, which will cause a constraint violation if processed by a C translator.

1 void f(void)
2 {
3 return (void)4; /* constraint violation */
4 // does not change the conformance status of a program
5 }

1800 A return statement without an expression shall only appear in a function whose return type is void. return
without ex-

pressionC90
This constraint is new in C99.

1 int f(void)
2 {
3 return; /* Not a constraint violation in C90. */
4 }

Semantics

1802 A function may have any number of return statements.

January 30, 2008 v 1.1

6.9 External definitions1811

C++

The C++ Standard does not explicitly specify this permission.

1803If a return statement with an expression is executed, the value of the expression is returned to the caller as
the value of the function call expression.

C++

The C++ Standard supports the use of expressions that do not return a value to the caller.return
void type

1799

1804If the expression has a type different from the return type of the function in which it appears, the value isreturn
implicit cast converted as if by assignment to an object having the return type of the function.136)

C++

In the case of functions having a return type of cv void (6.6.3p3) the expression is not implicitly converted
to that type. An explicit conversion is required.

1806136) The return statement is not an assignment.footnote
136

C90
This footnote did not appear in the C90 Standard. It was added by the response to DR #001.

C++

This distinction also occurs in C++, but as a special case of a much larger issue involving the creation of
temporary objects (for constructs not available in C).

6.6.3p2 A return statement can involve the construction and copy of a temporary object (12.2).

12.2p1 Temporaries of class type are created in various contexts: binding an rvalue to a reference (8.5.3), returning an
rvalue (6.6.3), . . .

6.9 External definitions

1810
translation unit
syntax
external dec-
laration
syntax translation-unit:

external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

C++

The C++ syntax includes function definitions as part of declarations (3.5p1):

3.5p1 translation-unit: declaration-seqopt

While the C++ Standard differs from C in supporting an empty translation unit, this is not considered a
significant difference.

Constraints

v 1.1 January 30, 2008

6.9 External definitions 1819

1811 The storage-class specifiers auto and register shall not appear in the declaration specifiers in an external external
declaration

not auto/registerdeclaration.

C++

The C++ Standard specifies where these storage-class specifiers can be applied, not where they cannot:

7.1.1p2
The auto or register specifiers can be applied only to names of objects declared in a block (6.3) or to function
parameters (8.4).

A C++ translator is not required to issue a diagnostic if the storage-class specifiers auto and register appear
in other scopes.

1813 Moreover, if an identifier declared with internal linkage is used in an expression (other than as a part of internal linkage
exactly one ex-

ternal definitionthe operand of a sizeof operator whose result is an integer constant), there shall be exactly one external
definition for the identifier in the translation unit.

C++

The C++ Standard does not specify any particular linkage:

3.2p3Every program shall contain exactly one definition of every non-inline function or object that is used in that
program; no diagnostic required.

The definition of the term used (3.2p2) also excludes operands of the sizeof operator.

Semantics

1814 As discussed in 5.1.1.1, the unit of program text after preprocessing is a translation unit, which consists of a
sequence of external declarations.

C++

The C++ Standard does not make this observation.

1815 These are described as “external” because they appear outside any function (and hence have file scope).

C++

The C++ Standard does not refer to them as “external” in the syntax.

1817 An external definition is an external declaration that is also a definition of a function (other than an inline external definition

definition) or an object.

C90
Support for inline definitions new in C99.

C++

The C++ Standard does not define the term external definition, or one equivalent to it.

1818 If an identifier declared with external linkage is used in an expression (other than as part of the operand of a external linkage
exactly one ex-

ternal definitionsizeof operator whose result is an integer constant), somewhere in the entire program there shall be exactly
one external definition for the identifier;

C90
Support for the sizeof operator having a result that is not a constant expression is new in C99.

January 30, 2008 v 1.1

6.9.1 Function definitions1823

C++

The specification given in the C++ is discussed elsewhere.
internal
linkage

exactly one
external definition

1813

1819otherwise, there shall be no more than one.137)

C++

The C++ Standard does not permit more than one definition in any translation unit (3.2p1). However, if a
non-inline function or an object is not used in a program it does not prohibit more than one definition in the
set of translation units making up that program.
Source developed using a C++ translator may contain multiple definitions of objects that are not referred.

1820137) Thus, if an identifier declared with external linkage is not used in an expression, there need be no externalfootnote
137 definition for it.

C++

The C++ Standard does not make this observation.

6.9.1 Function definitions

1821
function definition
syntax

function-definition:
declaration-specifiers declarator declaration-listopt compound-statement

declaration-list:
declaration
declaration-list declaration

C++

The C++ Standard does not support the appearance of declarator-listopt. Function declarations must
always use prototypes. It also specifies additional syntax for function-definition. This syntax involves
constructs that are not available in C.

Constraints

1822The identifier declared in a function definition (which is the name of the function) shall have a function type, as
specified by the declarator portion of the function definition.138)

C++

The C++ Standard specifies the syntax (which avoids the need for a footnote like that given in the C Standard):

8.4p1 The declarator in a function-definition shall have the form

D1 (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

1823The return type of a function shall be void or an object type other than array type.function
definition return
type C++

8.3.5p6 Types shall not be defined in return or parameter types.

The following example would cause a C++ translator to issue a diagnostic.

v 1.1 January 30, 2008

6.9.1 Function definitions 1828

1 enum E {E1, E2} f (void) /* does not change the conformance status of program */
2 // ill-formed
3 {
4 return E1;
5 }

1824 The storage-class specifier, if any, in the declaration specifiers shall be either extern or static.

C++

7.1.1p2The auto or register specifiers can be applied only to names of objects declared in a block (6.3) or to function
parameters (8.4).

A C++ translator is not required to issue a diagnostic if these storage-class specifiers appear in other contexts.
Source developed using a C++ translator may contain constraint violations if processed by a C translator.

1825 If the declarator includes a parameter type list, the declaration of each parameter shall include an identifier,
except for the special case of a parameter list consisting of a single parameter of type void, in which case
there shall not be an identifier.

C++

8.3.5p8An identifier can optionally be provided as a parameter name; if present in a function definition (8.4), it names a
parameter (sometimes called “formal argument”). [Note: in particular, parameter names are also optional in
function definitions and . . .

8.4p5[Note: unused parameters need not be named. For example,

void print(int a, int)
{

printf("a = %d\n",a);
}

—end note]

Source developed using a C++ translator may contain unnamed parameters, which will cause a constraint
violation if processed by a C translator.

1827 If the declarator includes an identifier list, each declaration in the declaration list shall have at least one identifier list
declare at least
one declaratordeclarator, those declarators shall declare only identifiers from the identifier list, and every identifier in the

identifier list shall be declared.

C90
The requirement that every identifier in the identifier list shall be declared is new in C99. In C90 undeclared
identifiers defaulted to having type int.
Source files that translated without a diagnostic being issued by a C90 translator may now result in a
diagnostic being generated by a C99 translator.

January 30, 2008 v 1.1

6.9.1 Function definitions1836

C++

The declaration list form of function definitions is not supported in C++.

1828An identifier declared as a typedef name shall not be redeclared as a parameter.

C++

The form of function definition that this requirement applies to is not supported in C++.

1829The declarations in the declaration list shall contain no storage-class specifier other than register and nofunction dec-
laration list
storage-class
specifier

initializations.

C++

The form of function definition that this requirement applies to (i.e., old-style) is not supported in C++.

1830138) The intent is that the type category in a function definition cannot be inherited from a typedef:footnote
138

typedef int F(void); // type F is "function with no parameters
// returning int"

F f, g; // f and g both have type compatible with F
F f { /* ... */ } // WRONG: syntax/constraint error
F g() { /* ... */ } // WRONG: declares that g returns a function
int f(void) { /* ... */ } // RIGHT: f has type compatible with F
int g() { /* ... */ } // RIGHT: g has type compatible with F
F *e(void) { /* ... */ } // e returns a pointer to a function
F *((e))(void) { /* ... */ } // same: parentheses irrelevant
int (*fp)(void); // fp points to a function that has type F
F *Fp; // Fp points to a function that has type F

C++

The C++ Standard specifies this as a requirement in the body of the standard (8.3.5p7).

Semantics

1831The declarator in a function definition specifies the name of the function being defined and the identifiers of its
parameters.

C++

The C++ Standard does not explicitly make this association about function definitions (8.4).

1832If the declarator includes a parameter type list, the list also specifies the types of all the parameters;

C++

If the parameter list is empty the C++ Standard defines the function as taking no arguments (8.3.5p2).

1834If the declarator includes an identifier list,139) the types of the parameters shall be declared in a following
declaration list.

C++

The identifier list form of function definition is not supported in C++.

1836the resulting type shall be an object type.

C++

The only difference, in parameter types, between a function declaration and a function definition specified by
the C++ Standard is:

8.3.5p6

v 1.1 January 30, 2008

6.9.1 Function definitions 1844

The type of a parameter or the return type for a function declaration that is not a definition may be an incomplete
class type.

1837 If a function that accepts a variable number of arguments is defined without a parameter type list that ends
with the ellipsis notation, the behavior is undefined.

C++

This C situation cannot occur in C++ because it relies on the old-style of function declaration, which is not
supported in C++.

1839 Its identifier is an lvalue, which is in effect declared at the head of the compound statement that constitutes parameter
scope begins atthe function body (and therefore cannot be redeclared in the function body except in an enclosed block).

C++

The C++ Standard does not explicitly specify the fact that this identifier is an lvalue. However, it can be
deduced from clauses 3.10p1 and 3.10p2.

3.3.2p2The potential scope of a function parameter name in a function definition (8.4) begins at its point of declaration.
If the function has a function try-block the potential scope of a parameter ends at the end of the last associated
handler, else it ends at the end of the outermost block of the function definition. A parameter name shall not be
redeclared in the outermost block of the function definition nor in the outermost block of any handler associated
with a function try-block.

1840 The layout of the storage for parameters is unspecified.

C++

The C++ Standard does not explicitly specify any storage layout behavior for parameters.

1841 On entry to the function, the size expressions of each variably modified parameter are evaluated and the value function entry
parameter

type evaluatedof each argument expression is converted to the type of the corresponding parameter as if by assignment.

C90
Support for variably modified types is new in C99.

C++

Support for variably modified types is new in C99 and is not specified in the C++ Standard.

1843 After all parameters have been assigned, the compound statement that constitutes the body of the function
definition is executed.

C90
The C90 Standard does not explicitly specify this behavior.

C++

The C++ Standard does not explicitly specify this behavior.

1844 If the } that terminates a function is reached, and the value of the function call is used by the caller, the function ter-
mination

reaching }behavior is undefined.

January 30, 2008 v 1.1

6.9.2 External object definitions1849

C++

6.6.3p2 Flowing off the end of a function is equivalent to a return with no value; this results in undefined behavior in a
value-returning function.

The C++ Standard does not require that the caller use the value returned for the behavior to be undefined; this
behavior can be deduced without any knowledge of the caller.

1 int f(int p_1)
2 {
3 if (p_1 > 10)
4 return 2;
5 }
6

7 void g(void)
8 {
9 int loc = f(11);

10

11 f(2); /* does not change the conformance status of the program */
12 // undefined behavior
13 }

1845EXAMPLE 1 In the following:

extern int max(int a, int b)
{

return a > b ? a : b;
}

extern is the storage-class specifier and int is the type specifier; max(int a, int b) is the function declara-
tor; and

{ return a > b ? a : b; }

is the function body. The following similar definition uses the identifier-list form for the parameter declarations:

extern int max(a, b)
int a, b;
{

return a > b ? a : b;
}

Here int a, b; is the declaration list for the parameters. The difference between these two definitions is that
the first form acts as a prototype declaration that forces conversion of the arguments of subsequent calls to
the function, whereas the second form does not.

C++

The second definition of max uses a form of function definition that is not supported in C++.

6.9.2 External object definitions
Semantics

1848If the declaration of an identifier for an object has file scope and an initializer, the declaration is an externalobject
external defini-
tion definition for the identifier.

v 1.1 January 30, 2008

6.9.2 External object definitions 1853

C++

The C++ Standard does not define the term external definition. The object described above is simply called a
definition in C++.

1849 A declaration of an identifier for an object that has file scope without an initializer, and without a storage-class tentative definition

specifier or with the storage-class specifier static, constitutes a tentative definition.

C++

The C++ Standard does not define the term tentative definition. Neither does it define a term with a similar
meaning. A file scope object declaration that does not include an explicit storage-class specifier is treated, in
C++, as a definition, not a tentative definition.
A translation unit containing more than one tentative definition (in C terms) will cause a C++ translator to
issue a diagnostic.

1 int glob;
2 int glob; /* does not change the conformance status of program */
3 // ill-formed program

1850 If a translation unit contains one or more tentative definitions for an identifier, and the translation unit contains object definition
implicitno external definition for that identifier, then the behavior is exactly as if the translation unit contains a file

scope declaration of that identifier, with the composite type as of the end of the translation unit, with an
initializer equal to 0.

C++

The C++ Standard does not permit more than one definition in the same translation unit (3.2p1) and so does
not need to specify this behavior.

1852 EXAMPLE 1 EXAMPLE
linkage

int i1 = 1; // definition, external linkage
static int i2 = 2; // definition, internal linkage
extern int i3 = 3; // definition, external linkage
int i4; // tentative definition, external linkage
static int i5; // tentative definition, internal linkage

int i1; // valid tentative definition, refers to previous
int i2; // 6.2.2 renders undefined, linkage disagreement
int i3; // valid tentative definition, refers to previous
int i4; // valid tentative definition, refers to previous
int i5; // 6.2.2 renders undefined, linkage disagreement

extern int i1; // refers to previous, whose linkage is external
extern int i2; // refers to previous, whose linkage is internal
extern int i3; // refers to previous, whose linkage is external
extern int i4; // refers to previous, whose linkage is external
extern int i5; // refers to previous, whose linkage is internal

C++

The tentative definitions are all definitions with external linkage in C++.

1853 EXAMPLE 2 If at the end of the translation unit containing EXAMPLE
tentative ar-

ray definitionint i[];

the array i still has incomplete type, the implicit initializer causes it to have one element, which is set to zero
on program startup.

January 30, 2008 v 1.1

6.10 Preprocessing directives1854

C90
This example was added to the C90 Standard by the response to DR #011.

C++

This example is ill-formed C++.

6.10 Preprocessing directives

1854
preproces-
sor directives
syntax

preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
if-section
control-line
text-line
non-directive

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
if constant-expression new-line groupopt
ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-expression new-line groupopt

else-group:
else new-line groupopt

endif-line:
endif new-line

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listopt)

replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list , ...)

replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

text-line:
pp-tokensopt new-line

non-directive:
pp-tokens new-line

lparen:
a (character not immediately preceded by white-space

replacement-list:
pp-tokensopt

v 1.1 January 30, 2008

6.10 Preprocessing directives 1858

pp-tokens:

preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

C90
Support for the following syntax is new in C99:

group-part:
non-directive

control-line:
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list , ...)

replacement-list new-line

The left hand side terms text-line and non-directive were introduced in C99. Their right-hand side
occurred directly in the right-hand side of group-part in the C90 Standard.

text-line:
pp-tokensopt new-line

non-directive:
pp-tokens new-line

The definition of lparen in C90 was:

lparen:
the left-parentheses character without preceding white-space

C++

The C++ Standard specifies the same syntax as the C90 Standard (16p1).

Description

1856 The first token in the sequence is a # preprocessing token that (at the start of translation phase 4) is either the
first character in the source file (optionally after white space containing no new-line characters) or that follows
white space containing at least one new-line character , .

C90
The C90 Standard did not contain the words “(at the start of translation phase 4)”, which were added by the
response to DR #144.

C++

Like C90, the C++ Standard does not specify the start of translation phase 4.

1858 A new-line character ends the preprocessing directive even if it occurs within what would otherwise be an preprocess-
ing directive

ended byinvocation of a function-like macro.

C90
This wording was not in the C90 Standard, and was added by the response to DR #017.

January 30, 2008 v 1.1

6.10.1 Conditional inclusion1880

C++

Like the original C90 Standard, the C++ Standard does not explicitly specify this behavior. However, given
that vendors are likely to use a preprocessor that is identical to the one used in their C product (or the one
that used to be used, if they nolonger market a C product), it is unlikely that the behaviors seen in practice
will be different.

1862A non-directive shall not begin with any of the directive names appearing in the syntax.

C90
Explicit support for non-directive is new in C99.

C++

Explicit support for non-directive is new in C99 and is not discussed in the C++ Standard.

1863When in a group that is skipped (6.10.1), the directive syntax is relaxed to allow any sequence of preprocessing
tokens to occur between the directive name and the following new-line character.

C90
The C90 Standard did not explicitly specify this behavior.

C++

Like C90, the C++ Standard does not explicitly specify this behavior.

Constraints
Semantics

1868EXAMPLE In:EXAMPLE
EMPTY #

#define EMPTY
EMPTY # include <file.h>

the sequence of preprocessing tokens on the second line is not a preprocessing directive, because it does
not begin with a # at the start of translation phase 4, even though it will do so after the macro EMPTY has been
replaced.

C90
This example was not in the C90 Standard and was added by the response to DR #144.

C++

This example does not appear in the C++ Standard.

6.10.1 Conditional inclusion
Constraints
Semantics

1878After all replacements due to macro expansion and the defined unary operator have been performed, all#if
identifier replaced
by 0 remaining identifiers (including those lexically identical to keywords) are replaced with the pp-number 0, and

then each preprocessing token is converted into a token.

C++

In the C++ Standard true and false are not identifiers (macro names), they are literals:

16.1p4 . . . , except for true and false, are replaced with the pp-number 0, . . .

If the character sequence true is not defined as a macro and appears within the constant-expression of a
conditional inclusion directive, when preprocessed by a C++ translator this character sequence will be treated
as having the value one, not zero.

v 1.1 January 30, 2008

6.10.2 Source file inclusion 1911

1880
#if

operand type
uintmax_*For the purposes of this token conversion and evaluation, all signed integer types and all unsigned integer

types act as if they have the same representation as, respectively, the types intmax_t and uintmax_t defined
in the header <stdint.h>.142)

C90

The resulting tokens comprise the controlling constant expression which is evaluated according to the rules of
6.4 using arithmetic that has at least the ranges specified in 5.2.4.2, except that int and unsigned int act as if
they have the same representation as, respectively, long and unsigned long.

The ranks of the integer types used for the operands of the controlling constant expression differ between
C90 and C99 (although in both cases the rank is the largest that an implementation is required to support).
Those cases where the value of the operand exceeded the representable range in C90 (invariably resulting in
the value wrapping) are likely to generate a very large value in C99.

C++

The C++ Standard specifies the same behavior as C90 (see the C90 subsection above).

6.10.2 Source file inclusion
Constraints
Semantics

1909 The implementation shall provide unique mappings for sequences consisting of one or more letters or digits #include
mapping

to host file(as defined in 5.2.1) nondigits or digits (6.4.2.1) followed by a period (.) and a single letter nondigit.

C++

16.2p5The implementation provides unique mappings for sequences consisting of one or more nondigits (2.10) followed
by a period (.) and a single nondigit.

1910 The first character shall be a letter not be a digit.

C90
The requirement that the first character not be a digit is new in C99. Given that it is more restrictive than that
required for existing C90 implementations (and thus existing code) it is unlikely that existing code will be
affected by this requirement.

C++

This requirement is new in C99 and is not specified in the C++ Standard (the argument given in the C90
subsection (above) also applies to C++).

1911 The implementation may ignore the distinctions of alphabetical case and restrict the mapping to eight significant header name
significant
characterscharacters before the period.

C90
The limit specified by the C90 Standard was six significant characters. However, implementations invariably
used the number of significant characters available in the host file system (i.e., they do not artificially limit the
number of significant characters). It is unlikely that a header of source file will fail to be identified because
of a difference in what used to be a non-significant character.

January 30, 2008 v 1.1

6.10.3 Macro replacement1922

C++

The C++ Standard does not give implementations any permissions to restrict the number of significant
characters before the period (16.1p5). However, the limits of the file system used during translation are likely
to be the same for both C and C++ implementations and consequently no difference is listed here.

6.10.3 Macro replacement
Constraints

1919An identifier currently defined as an object-like macro shall not be redefined by another #define preprocessingobject-like
macro redefini-
tion directive unless the second definition is an object-like macro definition and the two replacement lists are

identical.

C90
The wording in the C90 Standard was modified by the response to DR #089.

1921There shall be white-space between the identifier and the replacement list in the definition of an object-like
macro.

C90
The response to DR #027 added the following requirements to the C90 Standard.

DR #027 Correction

Add to subclause 6.8, page 86 (Constraints):

In the definition of an object-like macro, if the first character of a replacement list is not a character required by
subclause 5.2.1, then there shall be white-space separation between the identifier and the replacement list.*

[Footnote *: This allows an implementation to choose to interpret the directive:

#define THISANDTHAT(a, b) ((a) + (b))

as defining a function-like macro THISANDTHAT, rather than an object-like macro THIS. Whichever choice it
makes, it must also issue a diagnostic.]

However, the complex interaction between this specification and UCNs was debated during the C9X review
process and it was decided to simplify the requirements to the current C99 form.

1 #define TEN.1 /* Define the macro TEN to have the body .1 in C90. */
2 /* A constraint violation in C99. */

C++

The C++ Standard specifies the same behavior as the C90 Standard.

1922If the identifier-list in the macro definition does not end with an ellipsis, the number of arguments (including
those arguments consisting of no preprocessing tokens) in an invocation of a function-like macro shall equal
the number of parameters in the macro definition.

C90

If (before argument substitution) any argument consists of no preprocessing tokens, the behavior is undefined.

The behavior of the following was discussed in DR #003q3, DR #153, and raised against C99 in DR #259
(no committee response was felt necessary).

v 1.1 January 30, 2008

6.10.3.1 Argument substitution 1941

1 #define foo() A
2 #define bar(B) B
3

4 foo() // no arguments
5 bar() // one empty argument?

What was undefined behavior in C90 (an empty argument) is now explicitly supported in C99. The two most
likely C90 translator undefined behaviors are either to support them (existing source developed using such a
translator will may contain empty arguments in a macro invocation), or to issue a diagnostic (existing source
developed using such a translator will not contain any empty arguments in a macro invocation).

C++

The C++ Standard contains the same wording as the C90 Standard.
C++ translators are not required to correctly process source containing macro invocations having any empty
arguments.

1923 Otherwise, there shall be more arguments in the invocation than there are parameters in the macro definition ... arguments
macro(excluding the ...).

C90
Support for the form ... is new in C99.

C++

Support for the form ... is new in C99 and is not specified in the C++ Standard.

1925 The identifier __VA_ARGS__ shall occur only in the replacement-list of a function-like macro that uses the
ellipsis notation in the argumentsparameters.

C90
Support for __VA_ARGS__ is new in C99.
Source code declaring an identifier with the spelling __VA_ARGS__ will cause a C99 translator to issue a
diagnostic (the behavior was undefined in C90).

C++

Support for __VA_ARGS__ is new in C99 and is not specified in the C++ Standard.

Semantics

1933 A preprocessing directive of the form macro
function-like

define identifier lparen identifier-listopt) replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list , ...) replacement-list new-line

defines a function-like macro with arguments, parameters, whose use is similar syntactically to a function call.

C90
Support for the ... notation in function-like macro definitions is new in C99.

C++

Support for the ... notation in function-like macro definitions is new in C99 and is not specified in the C++

Standard.

1941 If there is a ... in the identifier-list in the macro definition, then the trailing arguments, including any separating
comma preprocessing tokens, are merged to form a single item: the variable arguments.

January 30, 2008 v 1.1

6.10.3.3 The ## operator1960

C90
Support for ... in function-like macro definitions is new in C99.

C++

Support for ... in function-like macro definitions is new in C99 and is not specified in the C++ Standard.

6.10.3.1 Argument substitution

1945After the arguments for the invocation of a function-like macro have been identified, argument substitutionargument substitu-
tion takes place.

C++

C++ does not support empty arguments___? .E_COMMENT

1949An identifier __VA_ARGS__ that occurs in the replacement list shall be treated as if it were a parameter, and
the variable arguments shall form the preprocessing tokens used to replace it.

C90
Support for __VA_ARGS__ is new in C99.

C++

Support for __VA_ARGS__ is new in C99 and is not specified in the C++ Standard.

6.10.3.2 The # operator
Constraints
Semantics

1954Otherwise, the original spelling of each preprocessing token in the argument is retained in the character string#
escape sequence
handling literal, except for special handling for producing the spelling of string literals and character constants: a \

character is inserted before each " and \ character of a character constant or string literal (including the
delimiting " characters), except that it is implementation-defined whether a \ character is inserted before the \
character beginning a universal character name.

C90
Support for universal character names is new in C99.

C++

Support for universal character names is available in C++. However, wording for this clause of the C++

Standard was copied from C90, which did not support universal character names. The behavior of a C++

translator can be viewed as being equivalent to another C99 translator, in this regard. A C++ translator is not
required to document its handling of a \ character before a universal character name.

1956The character string literal corresponding to an empty argument is "".

C90
An occurrence of an empty argument in C90 caused undefined behavior.

C++

Like C90, the behavior in C++ is not explicitly defined (some implementations e.g., Microsoft C++, do not
support empty arguments).

6.10.3.3 The ## operator
Constraints
Semantics

v 1.1 January 30, 2008

6.10.3.4 Rescanning and further replacement 1968

1960 however, if an argument consists of no preprocessing tokens, the parameter is replaced by a placemarker argument
no tokens

replaced by place-
marker token

preprocessing token instead.148)

C90
The explicitly using the concept of a placemarker preprocessing token is new in C99.

C++

The explicit concept of a placemarker preprocessing token is new in C99 and is not described in C++.

1962 Placemarker preprocessing tokens are handled specially: concatenation of two placemarkers results in placemarker
preprocessora single placemarker preprocessing token, and concatenation of a placemarker with a non-placemarker

preprocessing token results in the non-placemarker preprocessing token.

C90
The concept of placemarker preprocessing tokens is new in the C99 Standard. The behavior of concatenating
an empty argument with preprocessing token was not explicitly defined in C90, it was undefined behavior.

C++

Like C90, the behavior of concatenating an empty argument with preprocessing token is not explicitly defined
in C++, it is undefined behavior.

1966 EXAMPLE In the following fragment: EXAMPLE
#

#define hash_hash # ## #
#define mkstr(a) # a
#define in_between(a) mkstr(a)
#define join(c, d) in_between(c hash_hash d)

char p[] = join(x, y); // equivalent to
// char p[] = "x ## y"

The expansion produces, at various stages:

join(x, y)

in_between(x hash_hash y)

in_between(x ## y)

mkstr(x ## y)

"x ## y"

In other words, expanding hash_hash produces a new token, consisting of two adjacent sharp signs, but this
new token is not the ## operator.

C++

This example is the response to a DR against C90. While there has been no such DR in C++, it is to be
expected that WG21 would provide the same response.

1967 148) Placemarker preprocessing tokens do not appear in the syntax because they are temporary entities that footnote
148exist only within translation phase 4.

C90
Support for the concept of placemarker preprocessing tokens is new in C99.

January 30, 2008 v 1.1

6.10.3.5 Scope of macro definitions1984

C++

Support for the concept of placemarker preprocessing tokens is new in C99 and they are not described in the
C++ Standard.

6.10.3.4 Rescanning and further replacement

1968After all parameters in the replacement list have been substituted and # and ## processing has taken place,rescanning

all placemarker preprocessing tokens are removed.

C90
Support for the concept of placemarker preprocessing tokens is new in C99.

C++

Support for the concept of placemarker preprocessing tokens is new in C99 and does not exist in C++.

1973The resulting completely macro-replaced preprocessing token sequence is not processed as a preprocessingexpanded to-
ken sequence
not treated as a
directive

directive even if it resembles one, but all pragma unary operator expressions within it are then processed as
specified in 6.10.9 below.

C90
Support for _Pragma unary operator expressions is new in C99.

C++

Support for _Pragma unary operator expressions is new in C99 and is not available in C++.

6.10.3.5 Scope of macro definitions

1975Macro definitions have no significance after translation phase 4.macro definition
no significance
after C90

This observation is new in C99.

C++

This observation is not made in the C++ document.

1982EXAMPLE 5 To illustrate the rules for placemarker preprocessing tokens, the sequenceEXAMPLE
placemarker

#define t(x,y,z) x ## y ## z
int j[] = { t(1,2,3), t(,4,5), t(6,,7), t(8,9,),

t(10,,), t(,11,), t(,,12), t(,,) };

results in

int j[] = { 123, 45, 67, 89,
10, 11, 12, };

C90
This example is new in the C99 Standard and contains undefined behavior in C90.

C++

The C++ Standard specification is the same as that in the C90 Standard,

1984EXAMPLE 7 Finally, to show the variable argument list macro facilities:EXAMPLE
variable macro
arguments

#define debug(...) fprintf(stderr, __VA_ARGS__)
#define showlist(...) puts(#__VA_ARGS__)
#define report(test, ...) ((test)?puts(#test):\

printf(__VA_ARGS__))

v 1.1 January 30, 2008

6.10.5 Error directive 1993

debug("Flag");
debug("X = %d\n", x);
showlist(The first, second, and third items.);
report(x>y, "x is %d but y is %d", x, y);

results in

fprintf(stderr, "Flag");
fprintf(stderr, "X = %d\n", x);
puts("The first, second, and third items.");
((x>y)?puts("x>y"):

printf("x is %d but y is %d", x, y));

C90
Support for macros taking a variable number of arguments is new in C99.

C++

Support for macros taking a variable number of arguments is new in C99 and is not supported in C++.

6.10.4 Line control
Constraints
Semantics

1988 The digit sequence shall not specify zero, nor a number greater than 2147483647.

C90
The limit specified in the C90 Standard was 32767.

C++

Like C90, the limit specified in the C++ Standard is 32767.

1992 The directive resulting after all replacements shall match one of the two previous forms and is then processed
as appropriate.

C++

The C++ Standard uses different wording that has the same meaning.

16.4p5If the directive resulting after all replacements does not match one of the two previous forms, the behavior is
undefined; otherwise, the result is processed as appropriate.

6.10.5 Error directive
Semantics

1993 A preprocessing directive of the form #error

error pp-tokensopt new-line

causes the implementation to produce a diagnostic message that includes the specified sequence of prepro-
cessing tokens.

C++

16.5p1

January 30, 2008 v 1.1

6.10.6 Pragma directive2000

. . . , and renders the program ill-formed.

Both language standards require that a diagnostic be issued. But the C Standard does not specify that the
construct alters the conformance status of the translation unit. However, given that the occurrence of this
directive causes translation to terminate, this is a moot point.#error

terminate
translation

89

6.10.6 Pragma directive
Semantics

1994A preprocessing directive of the form#pragma
directive

pragma pp-tokensopt new-line

where the preprocessing token STDC does not immediately follow pragma in the directive (prior to any macro
replacement)149) causes the implementation to behave in an implementation-defined manner.

C90
The exception for the preprocessing token STDC is new in C99.

C++

The exception for the preprocessing token STDC is new in C99 and is not specified in C++.

1995The behavior might cause translation to fail or cause the translator or the resulting program to behave in a
non-conforming manner.

C90
These possibilities were not explicitly specified in the C90 Standard.

C++

These possibilities are not explicitly specified in the C++ Standard.

1997If the preprocessing token STDC does immediately follow pragma in the directive (prior to any macro replace-
ment), then no macro replacement is performed on the directive, and the directive shall have one of the
following forms150) whose meanings are described elsewhere:

#pragma STDC FP_CONTRACT on-off-switch
#pragma STDC FENV_ACCESS on-off-switch
#pragma STDC CX_LIMITED_RANGE on-off-switch
on-off-switch: one of

ON OFF DEFAULT

C90
Support for the preprocessing token STDC in pragma directives is new in C99.

C++

Support for the preprocessing token STDC in pragma directives is new in C99 and is not specified in the C++

Standard.

1999149) An implementation is not required to perform macro replacement in pragmas, but it is permitted exceptfootnote
149 for in standard pragmas (where STDC immediately follows pragma).

C90
This footnote is new in C99.

v 1.1 January 30, 2008

6.10.8 Predefined macro names 2015

C++

This footnote is new in C99 and is not specified in the C++ Standard.

2000 If the result of macro replacement in a non-standard pragma has the same form as a standard pragma, the
behavior is still implementation-defined;

C90
Support for standard pragmas is new in C99.

C++

Support for standard pragmas is new in C99 and is not specified in the C++ Standard.

6.10.7 Null directive
Semantics

6.10.8 Predefined macro names

2009 __STDC__ The integer constant 1, intended to indicate a conforming implementation. __STDC__
macro

C++

16.8p1Whether _ _STDC_ _ is predefined and if so, what its value is, are implementation-defined.

It is to be expected that a C++ translator will not define the __STDC__, the two languages are different,
although a conforming C++ translator may often behave in a fashion expected of a conforming C translator.
Some C++ translators have a switch that causes them to operate in a C compatibility mode (in this case it is to
be expected that this macro will be defined as per the requirements of the C Standard).

2010 __STDC_HOSTED__ The integer constant 1 if the implementation is a hosted implementation or the integer
__STDC_HOSTED__

macroconstant 0 if it is not.

C90
Support for the __STDC_HOSTED__ macro is new in C99.

C++

Support for the __STDC_HOSTED__ macro is new in C99 and it is not available in C++.

2011 __STDC_VERSION__ The integer constant 199901L.153)

__STDC_VERSION__
macroC90

Support for the __STDC_VERSION__ macro was first introduced in Amendment 1 to C90, where it was
specified to have the value 199409L. In a C90 implementation (with no support for Amendment 1) occurrences
of this macro are likely to be replaced by 0 (because it will not be defined as a macro). 1878 #if

identifier replaced
by 0

C++

Support for the __STDC_VERSION__ macro is not available in C++.

2014 The following macro names are conditionally defined by the implementation:

C90
Support for conditionally defined macros is new in C99.

C++

Support for conditionally defined macros is new in C99 and none are defined in the C++ Standard.

January 30, 2008 v 1.1

6.10.8 Predefined macro names2026

2015__STDC_IEC_559__ The integer constant 1, intended to indicate conformance to the specifications in annex F
__STDC_IEC_559__
macro (IEC 60559 floating-point arithmetic).

C90
Support for the __STDC_IEC_559__ macro is new in C99.

C++

Support for the __STDC_IEC_559__ macro is new in C99 and it is not available in C++.
The C++ Standard defines, in the std namespace:

18.2.1.1
static const bool is_iec559 = false;

false is the default value. In the case where the value is true the requirements stated in C99 also occur in
the C++ Standard. The member is_iec559 is part of the numerics template and applies on a per type basis.
However, the requirement for the same value representation, of floating types, implies that all floating types
are likely to have the same value for this member.

2017152) The presumed source file name and line number can be changed by the #line directive.footnote
152

C90
This observation is new in the C99 Standard.

C++

Like C90, the C++ Standard does not make this observation.

2020__STDC_IEC_559_COMPLEX__ The integer constant 1, intended to indicate adherence to the specifications in
__STDC__IEC_559_COMPLEX__
macro informative annex G (IEC 60559 compatible complex arithmetic).

C90
Support for the __STDC_IEC_559_COMPLEX__ macro is new in C99.

C++

Support for the __STDC_IEC_559_COMPLEX__ macro is new in C99 and is not available in C++.

2021__STDC_ISO_10646__ An integer constant of the form yyyymmL (for example, 199712L) ,.
__STDC_ISO_10646__
macro C90

Support for the __STDC_ISO_10646__ macro is new in C99.

C++

Support for the __STDC_ISO_10646__ macro is new in C99 and is not available in C++.

2022If this symbol is defined, then every character in the Unicode required set, when stored in an object of type
wchar_t, has the same value as the short identifier of that character.

C90
This form of encoding was not mentioned in the C90 Standard.

C++

This form of encoding is not mentioned in the C++ Standard.

2026None of these macro names, nor the identifier defined, shall be the subject of a #define or a #undefpredefined
macros
not #defined preprocessing directive.

v 1.1 January 30, 2008

6.11.1 Floating types 2034

C++

The C++ Standard uses different wording that has the same meaning.

16.8p3If any of the pre-defined macro names in this subclause, or the identifier defined, is the subject of a #define
or a #undef preprocessing directive, the behavior is undefined.

2027 Any other predefined macro names shall begin with a leading underscore followed by an uppercase letter or a macro name
predefined

reservedsecond underscore.

C++

The C++ Standard does not reserve names for any other predefined macros.

2028 The implementation shall not predefine the macro __cplusplus, nor shall it define it in any standard header. __cplusplus

C90
This requirement was not specified in the C90 Standard. Given the prevalence of C++ translators, vendors
were aware of the issues involved in predefining such a macro name (i.e., they did not do it).

C++

16.8p1The name _ _cplusplus is defined to the value 199711L when compiling a C++ translation unit.143)

6.10.9 Pragma operator
Semantics

2030 A unary operator expression of the form: _Pragma
operator

_Pragma (string-literal)

is processed as follows: The string literal is destringized by deleting the L prefix, if present, deleting the
leading and trailing double-quotes, replacing each escape sequence \" by a double-quote, and replacing
each escape sequence \\ by a single backslash.

C90
Support for the _Pragma unary operator is new in C99.

C++

Support for the _Pragma unary operator is new in C99 and it is not available in C++.

6.11 Future language directions
6.11.1 Floating types

2034 Future standardization may include additional floating-point types, including those with greater range, precision, floating types
future language

directionsor both than long double.

C90
This future direction is new in C99.

January 30, 2008 v 1.1

6.11.9 Predefined macro names2043

C++

The C++ Standard specifies (Annex D) deprecated features. With one exception these all relate to constructs
specific to C++.

D.5p2 Each C header, whose name has the form name.h, behaves as if each name placed in the Standard library
namespace by the corresponding cname header is also placed within the namespace scope of the namespace
std and is followed by an explicit using-declaration (7.3.3)

6.11.2 Linkages of identifiers

2035Declaring an identifier with internal linkage at file scope without the static storage-class specifier is anidentifier linkage
future language
directions obsolescent feature.

C90
This future direction is new in C99.

6.11.3 External names

2036Restriction of the significance of an external name to fewer than 255 characters (considering each universalsignificant
characters
future language
directions

character name or extended source character as a single character) is an obsolescent feature that is a
concession to existing implementations.

C90
Part of the future language direction specified in C90 was implemented in C99.

Restriction of the significance of an external name to fewer than 31 characters or to only one case is an
obsolescent feature that is a concession to existing implementations.

6.11.4 Character escape sequences
6.11.5 Storage-class specifiers
6.11.6 Function declarators
6.11.7 Function definitions
6.11.8 Pragma directives

2042Pragmas whose first preprocessing token is STDC are reserved for future standardization.Pragma directives
future language
directions C90

Support for this form of pragma directive is new in C99.

6.11.9 Predefined macro names

2043Macro names beginning with __STDC_ are reserved for future standardization.Predefined
macro names
future language
directions C90

The specification of this reserved set of macro name spellings is new in C99.

v 1.1 January 30, 2008

References
1. T. H. Gibbs. The design and implementation of a parser and front-end

for the ISO C++ language and validation of the parser. PhD thesis,
Clemson University, May 2003.

2. ISO. ISO/IEC 9945-1:1990 Information technology —Portable Oper-
ating System Interface (POSIX). ISO, 1990.

3. D. M. Ritchie. The development of the C language. Second History

of Programming Languages conference, 1993.

4. B. Stroustrup. The Design and Evolution of C++. Addison–Wesley,
1999.

5. R. L. Velduizen. C++ templates as partial evaluation. Technical Re-
port TR519, Indiana University, July 2000.

6. E. D. Willink. Meta-Compilation for C++. PhD thesis, University of
Surrey, June 2001.

January 30, 2008 v 1.1

